24,179 research outputs found

    Limit on T-violating P-conserving rhoNN interaction from the gamma decay of Fe-57

    Get PDF
    We use the experimental limit on the interference of M1 and E2 multipoles in the γ decay of 57Fe to bound the time-reversal-violating parity-conserving ρNN vertex. Our approach is a large-basis shell-model calculation of the interference. We find an upper limit on the parameter g¯ρ, the relative strength of the T-violating ρNN vertex, of close to 10^(-2), a value similar to the best limits from other experiments

    Space shuttle navigation analysis. Volume 1: GPS aided navigation

    Get PDF
    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases

    Entanglement signature in the mode structure of a single photon

    Full text link
    It is shown that entanglement, which is a quantum correlation property of at least two subsystems, is imprinted in the mode structure of a single photon. The photon, which is emitted by two coupled cavities, carries the information on the concurrence of the two intracavity fields. This can be useful for recording the entanglement dynamics of two cavity fields and for entanglement transfer.Comment: 4 pages, 3 figure

    Experimental determination of a nonclassical Glauber-Sudarshan P function

    Full text link
    A quantum state is nonclassical if its Glauber-Sudarshan P function fails to be interpreted as a probability density. This quantity is often highly singular, so that its reconstruction is a demanding task. Here we present the experimental determination of a well-behaved P function showing negativities for a single-photon-added thermal state. This is a direct visualization of the original definition of nonclassicality. The method can be useful under conditions for which many other signatures of nonclassicality would not persist.Comment: 4 pages, 4 figure

    Implementation of three-qubit Toffoli gate in a single step

    Full text link
    Single-step implementations of multi-qubit gates are generally believed to provide a simpler design, a faster operation, and a lower decoherence. For coupled three qubits interacting with a photon field, a realizable scheme for a single-step Toffoli gate is investigated. We find that the three qubit system can be described by four effective modified Jaynes-Cummings models in the states of two control qubits. Within the rotating wave approximation, the modified Jaynes-Cummings models are shown to be reduced to the conventional Jaynes-Cummings models with renormalized couplings between qubits and photon fields. A single-step Toffoli gate is shown to be realizable with tuning the four characteristic oscillation periods that satisfy a commensurate condition. Possible values of system parameters are estimated for single-step Toffli gate. From numerical calculation, further, our single-step Toffoli gate operation errors are discussed due to imperfections in system parameters, which shows that a Toffoli gate with high fidelity can be obtained by adjusting pairs of the photon-qubit and the qubit-qubit coupling strengthes. In addition, a decoherence effect on the Toffoli gate operation is discussed due to a thermal reservoir.Comment: 8 pages, 4 figures, to appear in PR

    Neutron-Proton Correlations in an Exactly Solvable Model

    Get PDF
    We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the algebra SO(8). We look particularly closely at Gamow-Teller strength and double beta decay, both to isolate the effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing correlations become strong enough a phase transition occurs and the dependence of the Gamow-Teller beta+ strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase transition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory, on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe

    Quantum Correlations from the Conditional Statistics of Incomplete Data

    Get PDF
    We study, in theory and experiment, the quantum properties of correlated light fields measured with click-counting detectors providing incomplete information on the photon statistics. We establish a correlation parameter for the conditional statistics, and we derive the corresponding nonclassicality criteria for detecting conditional quantum correlations. Classical bounds for Pearson's correlation parameter are formulated that allow us, once they are violated, to determine nonclassical correlations via the joint statistics. On the one hand, we demonstrate nonclassical correlations in terms of the joint click statistics of light produced by a parametric down conversion source. On the other hand, we verify quantum correlations of a heralded, split single-photon state via the conditional click statistics together with a generalization to higher-order moments. We discuss the performance of the presented nonclassicality criteria to successfully discern joint and conditional quantum correlations. Remarkably, our results are obtained without making any assumptions on the response function, quantum efficiency, and dark-count rate of the photodetectors

    Thickness-dependent secondary structure formation of tubelike polymers

    Full text link
    By means of sophisticated Monte Carlo methods, we investigate the conformational phase diagram of a simple model for flexible polymers with explicit thickness. The thickness constraint, which is introduced geometrically via the global radius of curvature of a polymer conformation, accounts for the excluded volume of the polymer and induces cooperative effects supporting the formation of secondary structures. In our detailed analysis of the temperature and thickness dependence of the conformational behavior for classes of short tubelike polymers, we find that known secondary-structure segments like helices and turns, but also ringlike conformations and stiff rods are dominant intrinsic topologies governing the phase behavior of such cooperative tubelike objects. This shows that the thickness constraint is indeed a fundamental physical parameter that allows for a classification of generic polymer structures
    corecore