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We study, in theory and experiment, the quantum properties of correlated light fields measured with click-
counting detectors providing incomplete information on the photon statistics. We establish a correlation
parameter for the conditional statistics, and we derive the corresponding nonclassicality criteria for detecting
conditional quantum correlations. Classical bounds for Pearson’s correlation parameter are formulated that
allow us, once they are violated, to determine nonclassical correlations via the joint statistics. On the one
hand, we demonstrate nonclassical correlations in terms of the joint click statistics of light produced by a
parametric down-conversion source. On the other hand, we verify quantum correlations of a heralded, split
single-photon state via the conditional click statistics together with a generalization to higher-order moments.
We discuss the performance of the presented nonclassicality criteria to successfully discern joint and
conditional quantum correlations. Remarkably, our results are obtained without making any assumptions on
the response function, quantum efficiency, and dark-count rate of photodetectors.
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Introduction.—The photon statistics of light lie at the
heart of quantum optics. Starting with the landmark experi-
ments of Hanbury Brown and Twiss [1], the photon
distribution can be used to determine whether or not the
field is consistent with a classical description. The classical
theory of radiation is properly satisfied when the quantum
state of light can be written as classical mixtures of coherent
states. Whenever such a description fails, this is referred to as
nonclassical light [2]. However, uncovering nonclassical
phenomena in the presence of loss, decoherence, and using
imperfect devices is typically very challenging [3–5].
Moreover, quantum behavior defines the foundation of
modern quantum technologies [6], which results in a
pressing need for reliable tools to process quantum states
that are robust against real world environments. As the
physical implementations become ever more complex, it is
helpful if analysis techniques place minimal assumptions on
the underlying principle of operation of such devices.
Characterizing the correlations of two beams of light, A

and B, can be done in two ways. First, one can access the
nonclassical character of light via joint correlation functions,
similar to the proposal of Hanbury Brown and Twiss [1].
Second, one can ask: “How well is the outcome of a
measurement in system B determined for a fixed outcome
in A?” and “Is the degree of determination compatible with
classical light?”While the first approach is based on the joint
probability distribution, the latter questions address the
conditional statistics. In quantum systems, the conditional
type of correlations leads to quantum effects such as

steering [7,8]. However, conditional correlations are typically
not studied in the context of nonclassical radiation fields.
In general, quantum features of the photon number statistics

can be accessed with nonclassicality tests [9–15]. However,
detectors that directly measure the photon distribution are not
commercially available as they require, for instance, cryogenic
cooling; see [16] for an overview. To gain significant albeit
incomplete information about a given state of light, it is
possible to consider technically much simpler systems con-
sisting of multiple on-off detectors, that is, avalanche photo-
diodes (APDs) in the Geiger mode [17,18]. Examples of such
schemes are given by CCD detectors [19–23] and multi-
plexing layouts [24–27]. In the latter scenario, one splits light
into several spatial beams or temporal bins with smaller
intensities, each being measured with an APD. The main
feature of the resulting click-counting statistics is its binomial
character [28], which significantly differs from the Poissonian
form of the photon-number distribution; see, also,
Refs. [29,30]. Therefore, the nonclassicality probes have to
be adjusted properly to correctly uncover nonclassical light
[31,32]. Such a technique directly identifies quantumness in
integrated waveguides [33] or systems with high losses [34].
These state-of-the-art implementations underline the function-
ality of click-counting detectors for applications in realistic
scenarios. However, such techniques are specific to joint
correlations of quantum states, and they may fail to uncover
the conditional nonclassicality.
In this Letter, we present a generalized approach to

handling statistics from multimode states which place
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minimal assumptions on the detectors. For this reason, we
formulate a conditional correlation parameter and derive its
bounds for classical light. We additionally compute the
classical limits for Pearson’s correlation coefficient for
inferring nonclassicality of the joint click distribution. By
implementing a parametric-down-conversion source, we
produce differently quantum correlated states of light that
are probed with our approaches. Our method for the
nonclassical conditional statistics is generalized and
applied to access higher-order moments.
The primary aim of this work is to demonstrate how a

general theoretical analysis of click statistics can be used to
highlight nonclassical behavior from a range of quantum
states. We illustrate the utility of this analysis with several
examples from typical experimental data. The strength of
the methodology that will be introduced lies in its ability to
identify and discriminate joint and conditional nonclassi-
cality with minimal assumptions about how the data were
acquired and the characteristics of the detector. In particu-
lar, this nonclassicality can be correctly determined even
when the raw data arising from different states appear very
similar, due to the effects of noise and loss.
Click-counting detectors.—Let us briefly recall the

theory of click-counting devices. The probability that
a ¼ 0;…; NA out of NA APDs produce a coincidence
click event is [28]

cðaÞ ¼
�
∶
�
NA

a

�
π̂aAð1̂ − π̂AÞNA−a∶

�
; ð1Þ

with π̂A ¼ 1̂ − exp½−Γðn̂A=NAÞ�. In this normally ordered
expectationvalue, h∶ � � � ∶i, n̂A is the photon number operator
and Γ is the so-called detector response function. One
typically considers a linear response ΓðxÞ ¼ ηxþ ν (quan-
tum efficiency η; dark count rate ν). Here, we do not assume
any form of Γ. Moreover, the click-statistics gives incomplete
information about the photon statistics, because an inversion
of a finite number of clicks to an infinite number of possible
photon states is, in principle, impossible. Similar to the single
mode case inEq. (1), one can describe the joint click-counting
distribution cða; bÞ for two light fields A and B [35]. In
this case, the joint statistics is givenby theoperators π̂A and π̂B
as well as the numbers of APDs NA and NB.
The features of the click-counting statistics and the

quantum statistics are closely related, for example,

h∶ðΔπ̂AÞ2∶i ¼
NAVarcðaÞðaÞ − EcðaÞðaÞ(NA − EcðaÞðaÞ)

N2
AðNA − 1Þ ;

ð2Þ
with Δπ̂A ¼ π̂A − h∶π̂A∶i and the symbol EcðaÞ and VarcðaÞ
stand for the expectation value and the variance of the
marginal statistics cðaÞ ¼ PNB

b¼0 cða; bÞ, respectively
[31,35]. It has been similarly shown for the covariance that

Covcða;bÞða; bÞ ¼ NANBh∶Δπ̂AΔπ̂B∶i: ð3Þ

For measuring quantum effects of a single mode, one can
define the binomial Q parameter [31],

QcðaÞ ¼
NAVarcðaÞðaÞ

EcðaÞðaÞ(NA − EcðaÞðaÞ)
− 1 ≥

cl:
0: ð4Þ

For classical light, this parameter is non-negative. If this
condition is violated, one has sub-binomial light [32,33].
However, the value of the binomial Q parameter cannot
give information about the correlations between a and b.
Experimental setup and generated states.—We illustrate

the measurement layout in Fig. 1. In our experiment,
we adopt time-multiplexed click-counting detectors,
which separate the incoming light into NA ¼ NB ¼ 8
distinct bins, by the use of two cascaded, unbalanced
fiber Mach-Zehnder interferometers [25,32]. To generate
our two-mode squeezed vacuum (TMSV) states, ð1−λ2Þ1=2P∞

n¼0λ
njniAjniB (0 < λ < 1), we pump a nonlinear potas-

sium-dihydrogen-phosphate crystal via type-II collinear
parametric down-conversion [36]. This produces photon
pairs in orthogonal polarization modes. These modes are
split at a polarizing beam splitter and directed to two
spatially separated time-multiplexed detectors. We obtain a
set of joint counts Cða; bÞ, which we normalize to obtain
the joint click probabilities cða; bÞ. At a pump pulse
repetition rate of 250 kHz, we obtain single-click count
rates of the order ∼1 kHz, and taking data for approx-
imately ten minutes yields ∼107 data points. The split-
photon (SP) states, tj1iAj0iB þ ð1 − t2Þ1=2j0iAj1iB
(0 < t < 1), are produced by heralding a single photon
from the parametric down-conversion process, and splitting
it into two modes. The analysis is carried out in the same
fashion as for the TMSV state, but with ∼106 data points.
Heralding decreases the data rate and, therefore, the
overall counts during stable operation of the experiment.
For technical details on the error analysis and the experi-
ment, we also refer to the Supplemental Material [37]
(Sec. D and Sec. E).
A single case per state would be sufficient to illustrate the

utility of our analysis. However, we also show how this

FIG. 1. Schematic of the generation of a two-mode squeezed-
vacuum state (excluding the dashed framed pattern) with a para-
metric down-conversion (PDC) source and a single photon split at a
polarizing beam splitter (PBS). The latter one is generated by
heraldingonto the clickof the singleAPDand rotated inpolarization
with a half-wave plate (HWP). Each resulting mode is sent to an
8-bin time-multiplexed detector serving as our click counter (CC).
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technique captures the variability under standard exper-
imental conditions; in this respect, we analyzed statistics
arising from two TMSV states and three SP states. We have
click numbers in the interval 0.03 ≤ Ecða;bÞðaþ bÞ ≤ 0.11
for the states TMSV1 and TMSV2, as well as for the three
states SP1;2;3 (cf. Table I and Sec. E in [37]). As a classical
reference, we also characterized a two-mode coherent state,
jαiAjβiB, by blocking the signal and sending laser light into
the free port of the last PBS in Fig. 1.
Conditional quantum correlations.—The conditional

statistics, pðbjaÞ ¼ pða; bÞ=pðaÞ, determines how well
the outcome of b is determined for a given a value. The
variance of the conditional statistics, VarpðbjaÞðbÞ, describes
the uncertainty of b for a fixed a. In addition, if the outcome
of a condition a is more likely than another one, this should
also have a larger contribution to this uncertainty. Hence,
we formulate a correlation measure in terms of the mean
conditional variance EpðaÞ(VarpðbjaÞðbÞ) in the form

κpðbjaÞ ¼ 1 −
EpðaÞ(VarpðbjaÞðbÞ)

VarpðbÞðbÞ
: ð5Þ

In [37] (Sec. B), we characterize the conditional correlation
coefficient in Eq. (5). There, we show that 0 ≤ κpðbjaÞ ≤ 1

and that the lower and the upper bound is attained for any
uncorrelated and any perfectly correlated probability dis-
tribution, respectively.
For the conditional click statistics, let us formulate the

bounds of κcðbjaÞ for classical light. For a classical state, the
conditional statistics cðbjaÞ is also classical [37] (Sec. A).
Thus, we find the following constraint for classical states:

κcðbjaÞ≤
cl:
κcl:max
cðbjaÞ ; ð6Þ

with

κcl:max
cðbjaÞ ¼ 1 −

EcðaÞ½EcðbjaÞðbÞ(NB − EcðbjaÞðbÞ)�
NBVarcðbÞðbÞ

: ð7Þ

The latter bound has been obtained by inserting constraints
on the conditional variance of a classical signal into

Eq. (5). That is, the conditional binomial parameter
QcðbjaÞ implies, in this case, VarcðbjaÞðbÞ ≥ EcðbjaÞðbÞ
½NB − EcðbjaÞðbÞ�=NB, cf. Eq. (4).
Whenever inequality (6) is violated, the degree of

determination of b in terms of κcðbjaÞ is too large to be
compatible with classical light. Hence, we have constructed
a measure for quantum correlations for conditional click-
counting statistics. The given bound κcl:maxcðbjaÞ is tight, as for

any binomial click statistics, for instance for coherent states,
holds VarcðbjaÞðbÞ ¼ EcðbjaÞðbÞ½NB − EcðbjaÞðbÞ�=NB. For
comparison, we derived similar bounds for the photon-
counting theory [37] (Sec. C).
We directly applied the conditional correlation parameter

to our measured data, see Fig. 2. The uncorrelated, classical
coherent state is compatible with the expectation κcðbjaÞ ≈
κcl:max
cðbjaÞ ≈ 0. The quantum correlations of the TMSV state

are not accessible with the conditional correlation param-
eter, κcðbjaÞ ≤ κcl:max

cðbjaÞ . For the SP states, we encounter the

fact that κcl:max
cðbjaÞ < 0. Since κcðbjaÞ is necessarily non-

negative, we have, in such a case, κcl:max
cðbjaÞ < 0 ≤ κcðbjaÞ,

which violates the classical constraint (6). Thus, the SP
states exhibit a nonclassical conditional correlation.

TABLE I. Success of the nonclassicality correlation tests. The symbol “✓” describes a significant verification of
quantum correlations, otherwise, we put “×”. The the summed click number Ecða;bÞðaþ bÞ and the higher-order
conditional nonclassicality number NcðbjaÞ [Eq. (12)] are explicitly given in the second and last row, respectively,
including their relative errors.

State Ecða;bÞðaþ bÞ κcðbjaÞ > κcl:max
cðbjaÞ jγcða;bÞj > γcl:max

cða;bÞ NcðbjaÞ < 0 NcðbjaÞ

Coherent 0.03614ð1� 0.20%Þ × × × −4.8 × 10−5ð1� 43%Þ
TMSV1 0.03801ð1� 0.19%Þ × ✓ × −3.7 × 10−3ð1� 37%Þ
TMSV2 0.10582ð1� 0.080%Þ × ✓ × −5.0 × 10−3ð1� 68%Þ
SP1 0.03768ð1� 0.28%Þ × × ✓ −4.46 × 10−5ð1� 3.5%Þ
SP2 0.07028ð1� 0.29%Þ ✓ × ✓ −1.67 × 10−4ð1� 2.4%Þ
SP3 0.09019ð1� 0.23%Þ ✓ × ✓ −2.55 × 10−4ð1� 1.7%Þ

Coherent TMSV1 TMSV2 SP1 SP2 SP3

0.02

0.00

0.02

0.04

c
b

a

FIG. 2. Results of conditional correlation coefficient κcðbjaÞ
(blue, solid lines) and the corresponding classical bounds κcl:max

cðbjaÞ
(black, dashed lines) are shown including the corresponding error
bars. Note that the plotted linewidth of κcðbjaÞ is larger than its
error bar in some cases. The light gray areas show the classically
allowed ranges, cf. inequality (6). The (red) area κcðbjaÞ < 0

corresponds to the unphysical values.
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Classical bounds for joint correlations.—For an
arbitrary joint probability distribution pða; bÞ, a well-
established measure of joint correlations is Pearson’s
correlation coefficient [39]

γpða;bÞ ¼
Covpða;bÞða; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varpða;bÞðaÞVarpða;bÞðbÞ
q : ð8Þ

For statistically independent random variables a and b,
we have γpða;bÞða; bÞ ¼ 0. A (negative) positive value
characterizes (anti-)correlations. The ultimate bound for
any statistics is jγpða;bÞða; bÞj ≤ 1.
Let us derive the bound for classical states. The covari-

ance of the joint click-counting distribution can be bounded
for classical states via a normally ordered form of the
Cauchy-Schwarz inequality

jh∶Δπ̂AΔπ̂B∶ij≤
cl:jh∶ðΔπ̂AÞ2∶ij1=2jh∶ðΔπ̂BÞ2∶ij1=2: ð9Þ

The normally ordered variances can be given in terms of
Eq. (2) for systems A and B. Using the definitions of γcða;bÞ
in Eq. (8), QcðaÞ, and QcðbÞ, we conclude

−γcl:max :
cða;bÞ ≤

cl:
γcða;bÞ≤

cl:
γcl:max :
cða;bÞ ; ð10Þ

where

γcl:max
cða;bÞ ¼

���� NANBQcðaÞQcðbÞ
ðNA − 1ÞðNB − 1ÞðQcðaÞ þ 1ÞðQcðbÞ þ 1Þ

����
1=2

:

ð11Þ
Interestingly, the bound for a classical Pearson’s correlation
coefficient γcl:max

cða;bÞ can be written solely in terms of the

measured binomialQ parameters for A and B, as well as the
numbers of APDs, NA and NB. In [37] (Sec. C), we give a
similar relation for the photon-counting detectors in terms
of the Mandel Q parameter [10]. There, we also construct
a nonlinearly, perfectly correlated state whose quantum
correlations cannot be inferred via γpða;bÞ, but can be
uncovered with κpðbjaÞ.
In Fig. 3,we show the applicationof the classical constraint

(10) to our measurements. The value of the coherent state is
consistent with the expected value γcða;bÞ ¼ 0. The TMSV
and the SP states are significantly correlated γcða;bÞ > 0 and
anticorrelated γcða;bÞ < 0, respectively. In addition, the
TMSV states clearly exceed the classical bound γcl:max

cða;bÞ , while
this is not true for the SP states. Thus, the TMSV states show
joint nonclassical correlations.
Our results show that the correlation parameters κcðbjaÞ

and γcða;bÞ are sensitive to different kinds of quantum
correlations and complement each other. On the one hand,
the conditional correlation coefficient detects quantum
correlations of the SP states in terms of the conditioned
click statistics cðbjaÞ. On the other hand, Pearson’s

correlation coefficient is sensitive to correlations of the joint
click statistics cða; bÞ which applies to the TMSV states.
Higher-order conditional correlations.—The error bars

in Fig. 2 for the SP states indicate that the significance of
verified conditional quantum correlations decreases with
decreasing summed click number Ecða;bÞðaþ bÞ. Hence,
we will extend our method to higher-order conditional
correlations. The conditional statistics cðbjaÞ can be
written in a form similar to Eq. (1) in terms of conditional,
normally ordered expectation values: cðbjaÞ ¼
h∶ NB

b π̂bBð1̂A − π̂BÞNB−b∶ija. In Refs. [34,35], we introduced
and applied a method to characterize higher-order non-
classicality based on normally ordered moments of the
click statistics. Here, the corresponding condition can be
rewritten as

NcðbjaÞ ¼ min
a¼0;…;NA

fh∶f̂a†f̂a∶ijag≥
cl:
0; ð12Þ

with f̂a ¼
PNB=2

m¼0 fmjaπ̂mB and using the coefficient vector
ðf0ja;…; fNB=2jaÞT . The coefficient vectors are chosen
to be the eigenvectors to the minimal eigenvalue of the
conditional matrix of moments, ðh∶π̂mþm0

B ∶ijaÞNB=2
m;m0¼0

, for
minimizing the individual normally ordered, conditional
expectation values h∶f̂a†f̂a∶ija [34,35].
The higher-order conditional nonclassicality-number

NcðbjaÞ in Eq. (12) is given in Table I together with a
benchmark of the implemented methods. The classical
coherent state and the TMSV state do not exhibit signifi-
cant negativities and, thus, do not violate condition (12). By
contrast, all SP states are clearly distinct from the classical
upper bound, even state SP1 (which has the lowest summed
click number, see Table I). Note that additional results of
our analysis can be found in Sec. E in the Supplemental
Material [37]. While joint quantum correlations are
typically studied, the conditional quantum correlations
considered here directly characterize the success of the
measurement-induced generation of nonclassical states of
light with imperfect detectors. This also includes the
generation of nonclassicality exhibited in higher orders.

Coherent TMSV1 TMSV2 SP1 SP2 SP3
0.05

0.00

0.05

0.10

c
a,

b

FIG. 3. Results of Pearson’s correlation coefficient γcða;bÞ (blue,
solid lines) and the corresponding classical bounds �γcl:max

cða;bÞ
(black, dashed lines) are shown. The light gray areas show the
classically allowed ranges.
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Conclusions.—We described and implemented rigorous
and straightforwardly applicable approaches to uncovering
quantum correlated light fields. We established a correlation
coefficient for conditional statistics for accessing conditional
quantum correlations measured with informationally incom-
plete click-counting detectors. For accessing quantum cor-
relations of the joint statistics, we derived the bounds for
Pearson’s correlation coefficient for classical light. Applying
both techniques, we successfully characterized nonclassical
photon correlations for the experimentally generated light
fields. The corresponding criteria are solely based on the
measured click statistics without any need for knowing or
correcting for the quantum efficiency, the dark count rate,
and the exact response function of our detection system.
A generalization to higher order moments of conditional
statistics was also included. Conditional quantum correla-
tions have been uncovered for split-photon states by using
second- and higher-order moments criteria. The joint quan-
tum correlations of two-mode squeezed-vacuum states have
been identified via Pearson’s correlation coefficient.
In addition, our analysis is flexible in that it has

straightforward extensions to general detection schemes
based on click counting. In particular, this includes the
cases of bright squeezed vacuum sources or when corre-
lations occur in the temporal-spectral degree of freedom.
Hence, our methods provide simple and yet powerful
approaches for verifying different types of quantum corre-
lated light fields for applications under realistic conditions.
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