29 research outputs found

    Dissecting strategies to tune the therapeutic potential of SARS-CoV-2–specific monoclonal antibody CR3022

    Get PDF
    The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coupled with a lack of therapeutics, has paralyzed the globe. Although significant effort has been invested in identifying antibodies that block infection, the ability of antibodies to target infected cells through Fc interactions may be vital to eliminate the virus. To explore the role of Fc activity in SARS-CoV-2 immunity, the functional potential of a cross–SARS-reactive antibody, CR3022, was assessed. CR3022 was able to broadly drive antibody effector functions, providing critical immune clearance at entry and upon egress. Using selectively engineered Fc variants, no protection was observed after administration of WT IgG1 in mice or hamsters. Conversely, the functionally enhanced Fc variant resulted in increased pathology in both the mouse and hamster models, causing weight loss in mice and enhanced viral replication and weight loss in the more susceptible hamster model, highlighting the pathological functions of Fc-enhancing mutations. These data point to the critical need for strategic Fc engineering for the treatment of SARS-CoV-2 infection

    Lack of Protection following Passive Transfer of Polyclonal Highly Functional Low-Dose Non-Neutralizing Antibodies

    Get PDF
    Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC), are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC), we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP) were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments

    HLA-C levels impact natural killer cell subset distribution and function

    No full text
    Differences in HLA-C expression are inversely correlated with HIV viral load set-point and slower progression to AIDS, linked to enhanced cytotoxic T cell immunity. Yet, beyond T cells, HLA-C serves as a dominant ligand for natural killer (NK) cell killer immunoglobulin-like receptors (KIR). Thus, we speculated that HLA-C expression levels may also impact NK activity, thereby modulating HIV antiviral control. Phenotypic and functional profiling was performed on freshly isolated PBMCs. HLA-C expression was linked to changes in NK subset distribution and licensing, particularly in HLA-C1/C1, KIR2DL3+2DL2-individuals. Moreover, high levels of HLA-C, were associated with reduced frequencies of anergic CD56neg NKs and lower frequencies of KIR2DL1/2/3+ NK cells, pointing to an HLA-C induced influence on the NK cell development in the absence of disease. In HIV infection, several spontaneous controllers, that expressed higher levels of HLA-C demonstrated robust NK-IFN-Îł secretion in response to target cells, highlighting a second disease induced licensing phenotype. Thus this population study points to a potential role for HLA-C levels both in NK cell education and development
    corecore