23,414 research outputs found

    Wave packet approach to transport in mesoscopic systems

    Full text link
    Wave packets provide a well established and versatile tool for studying time-dependent effects in molecular physics. Here, we demonstrate the application of wave packets to mesoscopic nanodevices at low temperatures. The electronic transport in the devices is expressed in terms of scattering and transmission coefficients, which are efficiently obtained by solving an initial value problem (IVP) using the time-dependent Schroedinger equation. The formulation as an IVP makes non-trivial device topologies accessible and by tuning the wave packet parameters one can extract the scattering properties for a large range of energies.Comment: 12 pages, 4 figure

    Revivals of quantum wave-packets in graphene

    Full text link
    We investigate the propagation of wave-packets on graphene in a perpendicular magnetic field and the appearance of collapses and revivals in the time-evolution of an initially localised wave-packet. The wave-packet evolution in graphene differs drastically from the one in an electron gas and shows a rich revival structure similar to the dynamics of highly excited Rydberg states. We present a novel numerical wave-packet propagation scheme in order to solve the effective single-particle Dirac-Hamiltonian of graphene and show how the collapse and revival dynamics is affected by the presence of disorder. Our effective numerical method is of general interest for the solution of the Dirac equation in the presence of potentials and magnetic fields.Comment: 22 pages, 10 figures, 3 movies, to appear in New Journal of Physic

    On some geometric features of the Kramer interior solution for a rotating perfect fluid

    Get PDF
    Geometric features (including convexity properties) of an exact interior gravitational field due to a self-gravitating axisymmetric body of perfect fluid in stationary, rigid rotation are studied. In spite of the seemingly non-Newtonian features of the bounding surface for some rotation rates, we show, by means of a detailed analysis of the three-dimensional spatial geodesics, that the standard Newtonian convexity properties do hold. A central role is played by a family of geodesics that are introduced here, and provide a generalization of the Newtonian straight lines parallel to the axis of rotation.Comment: LaTeX, 15 pages with 4 Poscript figures. To be published in Classical and Quantum Gravit

    Negative differential conductance induced by spin-charge separation

    Full text link
    Spin-charge states of correlated electrons in a one-dimensional quantum dot attached to interacting leads are studied in the non-linear transport regime. With non-symmetric tunnel barriers, regions of negative differential conductance induced by spin-charge separation are found. They are due to a correlation-induced trapping of higher-spin states without magnetic field, and associated with a strong increase in the fluctuations of the electron spin.Comment: REVTEX, 4 pages including 3 figures; Accepted for publication on Physical Review Letter

    Electron propagation in crossed magnetic and electric fields

    Full text link
    Laser-atom interaction can be an efficient mechanism for the production of coherent electrons. We analyze the dynamics of monoenergetic electrons in the presence of uniform, perpendicular magnetic and electric fields. The Green function technique is used to derive analytic results for the field--induced quantum mechanical drift motion of i) single electrons and ii) a dilute Fermi gas of electrons. The method yields the drift current and, at the same time it allows us to quantitatively establish the broadening of the (magnetic) Landau levels due to the electric field: Level number k is split into k+1 sublevels that render the kkth oscillator eigenstate in energy space. Adjacent Landau levels will overlap if the electric field exceeds a critical strength. Our observations are relevant for quantum Hall configurations whenever electric field effects should be taken into account.Comment: 11 pages, 2 figures, submitte

    Context-awareness to increase inclusion of people with DS in society

    Get PDF
    Assistive technologies have the potential to enhance the quality of life of citizens. Most especially of interest are those cases where a person is affected by some physical or cognitive impairment. Whilst most work in this area have been focused on assisting people indoors to support their independence, the POSEIDON project is focused on empowering citizens with Down’s Syndrome to support their independence outdoors. This paper explains the POSEIDON module which we are in the process of developing to make the system context-aware,reactive and adaptive

    Interference in interacting quantum dots with spin

    Full text link
    We study spectral and transport properties of interacting quantum dots with spin. Two particular model systems are investigated: Lateral multilevel and two parallel quantum dots. In both cases different paths through the system can give rise to interference. We demonstrate that this strengthens the multilevel Kondo effect for which a simple two-stage mechanism is proposed. In parallel dots we show under which conditions the peak of an interference-induced orbital Kondo effect can be split.Comment: 8 pages, 8 figure

    Apparatus for determining thermophysical properties of test specimens

    Get PDF
    Apparatus is described for directly measuring the quantity square root of pck of a test specimen such as a wind tunnel model where p is density, c is the specific heat and k is the thermal conductivity of the specimen. The test specimen and a reference specimen are simultaneously subjected to the heat from a heat source. A thermocouple is attached to the reference specimen for producing a first electrical analog signal proportional to the heat rate Q that the test specimen is subjected to and an infrared radiometer that is aimed at the test specimen produces a second electrical analog signal proportional to the surface temperature T of the test specimen. An analog-to-digital converter converts the first and second electrical analog signals to digital signals. These digital signals are applied to a computer for determining the quantity

    Axisymmetric Stationary Solutions as Harmonic Maps

    Full text link
    We present a method for generating exact solutions of Einstein equations in vacuum using harmonic maps, when the spacetime possesses two commutating Killing vectors. This method consists in writing the axisymmetric stationry Einstein equations in vacuum as a harmonic map which belongs to the group SL(2,R), and decomposing it in its harmonic "submaps". This method provides a natural classification of the solutions in classes (Weil's class, Lewis' class etc).Comment: 17 TeX pages, one table,( CINVESTAV- preprint 12/93
    • …
    corecore