345 research outputs found
The United Kingdom smart meter rollout through an energy justice lens
The United Kingdom’s Smart Meter Implementation Programme (SMIP) creates the legal framework so that an in-home display unit and a smart gas and electricity meter can be installed in every household by the end of 2020. Intended to reduce household energy consumption, the SMIP is one of the world’s most complex smart meter rollouts. It is also proving to be a challenging one as a series of obstacles has characterised and potentially restricted implementation. This chapter first gives background to the most recent smart meter roll out developments in the UK and second, uses an energy justice framework to explore the emergent challenges under the titles of distributional justice, procedural justice and justice as recognition. Applying this framework to an analysis of the UK SMIP provides opportunities to accurately record, present and expose potential forthcoming injustices. In light of this, we offer a series of policy recommendations
Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors
We report on a comprehensive combined experimental and theoretical study of
Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad
agreement between theoretical expectations and measured data allows us to
conclude that T_c in high-quality metallic samples increases linearly with the
number of uncompensated local moments on Mn_Ga acceptors, with no sign of
saturation. Room temperature ferromagnetism is expected for a 10% concentration
of these local moments. Our magnetotransport and magnetization data are
consistnent with the picture in which Mn impurities incorporated during growth
at interstitial Mn_I positions act as double-donors and compensate neighboring
Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I
antiferromagnetic coupling. These defects can be efficiently removed by
post-growth annealing. Our analysis suggests that there is no fundamental
obstacle to substitutional Mn_Ga doping in high-quality materials beyond our
current maximum level of 6.2%, although this achievement will require further
advances in growth condition control. Modest charge compensation does not limit
the maximum Curie temperature possible in ferromagnetic semiconductors based on
(Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.
Zinc-blende and wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy
There is a significant difference in the lattice parameters of GaN and AlN and for many device applications AlxGa1-xN substrates would be preferable to either GaN or AlN. We have studied the growth of free-standing zinc-blende and wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE). Thick (similar to 10 mu m) zinc-blende and wurtzite AlxGa1-xN films were grown by PA-MBE on 2-in. GaAs (0 0 1) and GaAs (1 1 1)B substrates respectively and were removed from the GaAs substrate after the growth. We demonstrate that free-standing zinc-blende and wurtzite AlxGa1-xN wafers can be achieved by PA-MBE for a wide range of Al compositions. (C) 2011 Elsevier B.V. All rights reserved
The UK low carbon energy transition: prospects and challenges
Under the 2008 Climate Change Act, the UK has committed to reducing its greenhouse gas emissions by 80% by 2050. This implies a radical transformation of systems for meeting energy service demands - in particular, a transition to a low carbon system of electricity generation and supply. Despite efforts by the UK Department for Energy and Climate Change (DECC) to examine pathways to 2050, most of the focus in UK energy policy has been on the shorter term reforms needed to incentivise high levels of investment in low carbon generation technologies, embedded in the Energy Bill currently going through the UK Parliament. This chapter draws on work by the authors and colleagues on UK low carbon transition pathways for the electricity sector to 2050 (Hammond and Pearson, 2013; Foxon, 2013) to examine the drivers and consequences of alternative low carbon pathways, and reflect on the implications for current UK energy policy measures. This suggests that governance models with different roles for government, business and civil society could lead to quite different low carbon futures, so that which model dominates could have a significant influence on the direction of change and the risks and challenges to be addressed. Whilst a hybrid government-market form of governance appears to be emerging, there still seems to be a relatively small role for civil society in influencing the pathway to a low carbon future
Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As
It has been demonstrated that magnetocrystalline anisotropies in (Ga,Mn)As
are sensitive to lattice strains as small as 10^-4 and that strain can be
controlled by lattice parameter engineering during growth, through post growth
lithography, and electrically by bonding the (Ga,Mn)As sample to a
piezoelectric transducer. In this work we show that analogous effects are
observed in crystalline components of the anisotropic magnetoresistance (AMR).
Lithographically or electrically induced strain variations can produce
crystalline AMR components which are larger than the crystalline AMR and a
significant fraction of the total AMR of the unprocessed (Ga,Mn)As material. In
these experiments we also observe new higher order terms in the
phenomenological AMR expressions and find that strain variation effects can
play important role in the micromagnetic and magnetotransport characteristics
of (Ga,Mn)As lateral nanoconstrictions.Comment: 11 pages, 4 figures, references fixe
Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures
We demonstrate dynamic voltage control of the magnetic anisotropy of a
(Ga,Mn)As device bonded to a piezoelectric transducer. The application of a
uniaxial strain leads to a large reorientation of the magnetic easy axis which
is detected by measuring longitudinal and transverse anisotropic
magnetoresistance coefficients. Calculations based on the mean-field
kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the
measured effect. Electrically induced magnetization switching and detection of
unconventional crystalline components of the anisotropic magnetoresistance are
presented, illustrating the generic utility of the piezo voltage control to
provide new device functionalities and in the research of micromagnetic and
magnetotransport phenomena in diluted magnetic semiconductors.Comment: Submitted to Physical Review Letters. Updates version 1 to include a
more detailed discussion of the effect of strain on the anisotropic
magnetoresistanc
Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass
Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T
pulsed magnetic fields. The CF effective mass is found to increase
approximately linearly with the effective field , in agreement with our
earlier work at lower fields. For a of 14 T it reaches , over 20
times the band edge electron mass. Data from all fractions are unified by the
single parameter for all the samples studied over a wide range of
electron densities. The energy gap is found to increase like at
high fields.Comment: Has final table, will LaTeX without error
X-ray detection with zinc-blende (cubic) GaN Schottky diodes
The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At −5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At −5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm−2 and (189.0 ± 0.2) mA cm−2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics
- …