1,925 research outputs found

    Corporate social responsibility: Why bother?

    Get PDF
    Cataloged from PDF version of article.Corporate Social Responsibility (CSR) is not a new concept, but unfortunately has been defined in so many ways, it is often misinterpreted. In fact it has had 40 years to evolve from a somewhat infant concept to a successful managerial tool to build a company's reputation in the global market arena. Corporate social responsibility has become corporate strategic responsibility - an imperative element of corporate global business strategies. Many leaders, entrepreneurs, investors, executives and politicians now recognize CSR's potential for differentiation and positioning in the global marketplace. In the 21st century, we find CSR to have a remarkable acceptance among practicing managers; publicly traded corporations especially label CSR an essential tool for their long-term legitimacy and profitability. CSR has matured from its infancy, becoming a corporate reputational adding value strategy for firms

    First ice core records of NO3− stable isotopes from Lomonosovfonna, Svalbard

    Get PDF
    Samples from two ice cores drilled at Lomonosovfonna, Svalbard, covering the period 1957–2009, and 1650–1995, respectively, were analyzed for NO3− concentrations, and NO3− stable isotopes (δ15N and δ18O). Post-1950 δ15N has an average of (−6.9 ± 1.9) ‰, which is lower than the isotopic signal known for Summit, Greenland, but agrees with values observed in recent Svalbard snow and aerosol. Pre-1900 δ15N has an average of (4.2 ± 1.6) ‰ suggesting that natural sources, enriched in the 15 N-isotope, dominated before industrialization. The post-1950 δ18O average of (75.1 ± 4.1) ‰ agrees with data from low and polar latitudes, suggesting similar atmospheric NOy (NOy = NO + NO2 + HNO3) processing pathways. The combination of anthropogenic source δ15N and transport isotope effect was estimated as −29.1 ‰ for the last 60 years. This value is below the usual range of NOx (NOx = NO + NO2) anthropogenic sources which is likely the result of a transport isotope effect of –32 ‰. We suggest that the δ15N recorded at Lomonosovfonna is influenced mainly by fossil fuel combustion, soil emissions and forest fires; the first and second being responsible for the marked decrease in δ15N observed in the post-1950s record with soil emissions being associated to the decreasing trend in δ15N observed up to present time, and the third being responsible for the sharp increase of δ15N around 2000

    Learning skills : robotics technology in automotive powertrain assembly

    Full text link
    The past 40 years have seen industrial robots establish their superiority over humans in most areas of manufacturing requiring endurance or repeatability. One important application domain, however, has so far lagged behind the industry’s expectations: mechanical assembly. As fast, precise and dependable as they are, traditional industrial robots just don’t seem able to perform certain assembly operations as well as a skilled human worker. A task as simple as screwing a light bulb into a lamp socket shows why. Applying the right amount of force and turning the bulb at just the right time, at exactly the right angle, is something a human does intuitively. How can a robot be programmed to do this? For robots to successfully emulate humans on an assembly line, they need to have force-sensing capability and exhibit compliance. They must be able to direct forces and moments in a controlled way, and react to contact information. New robot force control technology from ABB shows how

    A method for extending planar axis-symmetric parallel manipulators to spatial mechanisms

    Full text link
    This paper investigates axis-symmetric parallel manipulators, composed of a central base column and an arm system able to rotate around this column. The arm system includes several actuated upper arms, each connected to a manipulated platform by one or more lower arm linkages. Such manipulators feature an extensive positional workspace in relation to the manipulator footprint and equal manipulator properties in all radial half-planes defined by the common rotation-axis of the upper arms. The similarities between planar manipulators exclusively employing 2-degrees-of-freedom (2-DOF) lower arm linkages and lower mobility spatial manipulators only utilising 5-DOF lower arm linkages are analysed. The 2-DOF linkages are composed of a link with a 1-DOF hinge on both ends whilst the 5-DOF linkages utilise 3-DOF spherical joints and 2-DOF universal joints. By employing a proposed linkage substitution scheme, it is shown how a wide range of spatial axis-symmetric parallel manipulators can be derived from a limited range of planar manipulators of the same type

    State of AI-based monitoring in smart manufacturing and introduction to focused section

    Get PDF
    Over the past few decades, intelligentization, supported by artificial intelligence (AI) technologies, has become an important trend for industrial manufacturing, accelerating the development of smart manufacturing. In modern industries, standard AI has been endowed with additional attributes, yielding the so-called industrial artificial intelligence (IAI) that has become the technical core of smart manufacturing. AI-powered manufacturing brings remarkable improvements in many aspects of closed-loop production chains from manufacturing processes to end product logistics. In particular, IAI incorporating domain knowledge has benefited the area of production monitoring considerably. Advanced AI methods such as deep neural networks, adversarial training, and transfer learning have been widely used to support both diagnostics and predictive maintenance of the entire production process. It is generally believed that IAI is the critical technologies needed to drive the future evolution of industrial manufacturing. This article offers a comprehensive overview of AI-powered manufacturing and its applications in monitoring. More specifically, it summarizes the key technologies of IAI and discusses their typical application scenarios with respect to three major aspects of production monitoring: fault diagnosis, remaining useful life prediction, and quality inspection. In addition, the existing problems and future research directions of IAI are also discussed. This article further introduces the papers in this focused section on AI-based monitoring in smart manufacturing by weaving them into the overview, highlighting how they contribute to and extend the body of literature in this area

    Market Orientation and CSR: Performance Implications

    Get PDF
    Corporate social responsibility (CSR) has become of great interest to both researchers and practitioners alike with much discussion on whether the costs outweigh the performance implications. CSR has become a firm strategic tool (not only an ethical concept) as firms recognize that the customer value proposition and CSR is integrated with the focus on how to differentiate the firm from the view of the customer. We utilized market orientation (MO) theory as our foundation for our research as it explains how organizations adapt to their customer environment to develop competitive advantages. With the current customer focus on CSR, MO assists the field in identifying a possible firm differentiation. Our research found that firms that ranked high on CSR correlated positively to performance. We also found our theoretically developed constructs of firm customer orientation (CO) and firm market orientation correlated with the firm adopting CSR. The results also indicated that CSR positively mediates CO and MO to firm performance. As past research had mixed results over the direct relation of MO to performance, our research suggests that CSR may be the missing variable to explain the MO/Performance relationship. © 2015, Springer Science+Business Media Dordrecht

    A touching movement : force control turns machining robots into universal tools

    Full text link
    ABB has written a new chapter in the book of robot applications. While in the past it had been a tedious and time-consuming effort to program a robot for delicate fine-tuning operations, robots can now learn how to best manage such tasks themselves. This innovative approach can reduce overall programming times by up to 80 percent for robots used to grind castings, vastly improving productivity levels. With ABB’s new Flex Finishing system featuring RobotWare Machining FC (force control), one of the last real barriers to productivity improvement in this sector has been lifted

    Consistency of metabolic responses and appetite sensations under postabsorptive and postprandial conditions

    Get PDF
    The present study aimed to investigate the reliability of metabolic and subjective appetite responses under fasted conditions and following consumption of a cereal-based breakfast. Twelve healthy, physically active males completed two postabsorption (PA) and two postprandial (PP) trials in a randomised order. In PP trials a cereal based breakfast providing 1859 kJ of energy was consumed. Expired gas samples were used to estimate energy expenditure and fat oxidation and 100 mm visual analogue scales were used to determine appetite sensations at baseline and every 30 min for 120 min. Reliability was assessed using limits of agreement, coefficient of variation (CV), intraclass coefficient of correlation and 95% confidence limits of typical error. The limits of agreement and typical error were 292.0 and 105.5 kJ for total energy expenditure, 9.3 and 3.4 g for total fat oxidation and 22.9 and 8.3 mm for time-averaged AUC for hunger sensations, respectively over the 120 min period in the PP trial. The reliability of energy expenditure and appetite in the 2 h response to a cereal-based breakfast would suggest that an intervention requires a 211 kJ and 16.6 mm difference in total postprandial energy expenditure and time-averaged hunger AUC to be meaningful, fat oxidation would require a 6.7 g difference which may not be sensitive to most meal manipulations
    • …
    corecore