223 research outputs found

    Studies on conjugation of Spirogyra using monoclonal culture

    Get PDF
    We succeeded in inducing conjugation of Spirogyracastanacea by incubating algal filaments on agar plate. Conjugation could be induced using clone culture. The scalariform conjugation was generally observed, while lateral conjugation was rarely. When two filaments formed scalariform conjugation, all cells of one filament behaved as male and those of other filament did as female. Very rarely, however, zygospores were formed in both of pair filaments. The surface of conjugation tube was stained with fluorescently labeled-lectins, such as Bandeiraea (Griffonia) simplicifolia lectin (BSL-I) and jacalin. BSL-I strongly stained the conjugation tubes, while weakly did the cell surface of female gamete first and then that of male gamete. Jacalin stained mainly the conjugation tubes. Addition of jacalin inhibited the formation of papilla, suggesting some important role of jacalin-binding material at the initial step of formation of the conjugation tubes

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo

    Theory of Interaction of Memory Patterns in Layered Associative Networks

    Full text link
    A synfire chain is a network that can generate repeated spike patterns with millisecond precision. Although synfire chains with only one activity propagation mode have been intensively analyzed with several neuron models, those with several stable propagation modes have not been thoroughly investigated. By using the leaky integrate-and-fire neuron model, we constructed a layered associative network embedded with memory patterns. We analyzed the network dynamics with the Fokker-Planck equation. First, we addressed the stability of one memory pattern as a propagating spike volley. We showed that memory patterns propagate as pulse packets. Second, we investigated the activity when we activated two different memory patterns. Simultaneous activation of two memory patterns with the same strength led the propagating pattern to a mixed state. In contrast, when the activations had different strengths, the pulse packet converged to a two-peak state. Finally, we studied the effect of the preceding pulse packet on the following pulse packet. The following pulse packet was modified from its original activated memory pattern, and it converged to a two-peak state, mixed state or non-spike state depending on the time interval

    Universal features of correlated bursty behaviour

    Get PDF
    Inhomogeneous temporal processes, like those appearing in human communications, neuron spike trains, and seismic signals, consist of high-activity bursty intervals alternating with long low-activity periods. In recent studies such bursty behavior has been characterized by a fat-tailed inter-event time distribution, while temporal correlations were measured by the autocorrelation function. However, these characteristic functions are not capable to fully characterize temporally correlated heterogenous behavior. Here we show that the distribution of the number of events in a bursty period serves as a good indicator of the dependencies, leading to the universal observation of power-law distribution in a broad class of phenomena. We find that the correlations in these quite different systems can be commonly interpreted by memory effects and described by a simple phenomenological model, which displays temporal behavior qualitatively similar to that in real systems

    Sparse and Dense Encoding in Layered Associative Network of Spiking Neurons

    Full text link
    A synfire chain is a simple neural network model which can propagate stable synchronous spikes called a pulse packet and widely researched. However how synfire chains coexist in one network remains to be elucidated. We have studied the activity of a layered associative network of Leaky Integrate-and-Fire neurons in which connection we embed memory patterns by the Hebbian Learning. We analyzed their activity by the Fokker-Planck method. In our previous report, when a half of neurons belongs to each memory pattern (memory pattern rate F=0.5F=0.5), the temporal profiles of the network activity is split into temporally clustered groups called sublattices under certain input conditions. In this study, we show that when the network is sparsely connected (F<0.5F<0.5), synchronous firings of the memory pattern are promoted. On the contrary, the densely connected network (F>0.5F>0.5) inhibit synchronous firings. The sparseness and denseness also effect the basin of attraction and the storage capacity of the embedded memory patterns. We show that the sparsely(densely) connected networks enlarge(shrink) the basion of attraction and increase(decrease) the storage capacity

    Statistical Significance of Precisely Repeated Intracellular Synaptic Patterns

    Get PDF
    Can neuronal networks produce patterns of activity with millisecond accuracy? It may seem unlikely, considering the probabilistic nature of synaptic transmission. However, some theories of brain function predict that such precision is feasible and can emerge from the non-linearity of the action potential generation in circuits of connected neurons. Several studies have presented evidence for and against this hypothesis. Our earlier work supported the precision hypothesis, based on results demonstrating that precise patterns of synaptic inputs could be found in intracellular recordings from neurons in brain slices and in vivo. To test this hypothesis, we devised a method for finding precise repeats of activity and compared repeats found in the data to those found in surrogate datasets made by shuffling the original data. Because more repeats were found in the original data than in the surrogate data sets, we argued that repeats were not due to chance occurrence. Mokeichev et al. (2007) challenged these conclusions, arguing that the generation of surrogate data was insufficiently rigorous. We have now reanalyzed our previous data with the methods introduced from Mokeichev et al. (2007). Our reanalysis reveals that repeats are statistically significant, thus supporting our earlier conclusions, while also supporting many conclusions that Mokeichev et al. (2007) drew from their recent in vivo recordings. Moreover, we also show that the conditions under which the membrane potential is recorded contributes significantly to the ability to detect repeats and may explain conflicting results. In conclusion, our reevaluation resolves the methodological contradictions between Ikegaya et al. (2004) and Mokeichev et al. (2007), but demonstrates the validity of our previous conclusion that spontaneous network activity is non-randomly organized

    An Approach for Reliably Investigating Hippocampal Sharp Wave-Ripples In Vitro

    Get PDF
    Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system.The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R

    Adaptive and Phase Selective Spike Timing Dependent Plasticity in Synaptically Coupled Neuronal Oscillators

    Get PDF
    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits

    STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains

    Get PDF
    Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (∼10–20 ms) for sufficiently many inputs (∼100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks
    corecore