1,677 research outputs found
Ultrasensitive Label-Free Nanosensing and High-Speed Tracking of Single Proteins
: Label-free detection, analysis, and rapid tracking
of nanoparticles is crucial for future ultrasensitive sensing
applications, ranging from understanding of biological
interactions to the study of size-dependent classical-quantum
transitions. Yet optical techniques to distinguish nanoparticles
directly among their background remain challenging. Here we
present amplified interferometric scattering microscopy (aiSCAT)
as a new all-optical method capable of detecting
individual nanoparticles as small as 15 kDa proteins that is
equivalent to half a GFP. By balancing scattering and reflection
amplitudes the interference contrast of the nanoparticle signal
is amplified 1 to 2 orders of magnitude. Beyond high
sensitivity, a-iSCAT allows high-speed image acquisition exceeding several hundreds of frames-per-second. We showcase the
performance of our approach by detecting single Streptavidin binding events and by tracking single Ferritin proteins at 400
frames-per-second with 12 nm localization precision over seconds. Moreover, due to its extremely simple experimental
realization, this advancement finally enables a cheap and routine implementation of label-free all-optical single nanoparticle
detection platforms with sensitivity operating at the single protein level.Peer ReviewedPostprint (author's final draft
Cerebellar Motor Learning Deficits: Structural mapping, neuromodulation and training-related interventions
Movement allows us to interact with our direct environment, manipulate objects and communicate with each other. Moreover, we can adjust our movements to fit a remarkable range of situations and circumstances. The ability to adjust movements in response to changes in the environment and task demands is referred to as motor learning. The cerebellum is a key neural structure for motor learning. As such, disease of the cerebellum, in addition to the clinical symptom of ataxia, results in various motor learning deficits. There is a consensus that supportive therapy (e.g. physiotherapy, occupational therapy or speech therapy) can reduce ataxia symptoms of cerebellar patients, but little is known about the mechanisms underlying the improvements, and how patients can benefit most. Additionally, motor learning deficits are associated with reduced efficacy of supportive therapy. With the work described in this thesis, we sought to unravel the structural components of cerebellar disease and the relationship between cerebellar integrity and motor learning. Furthermore, we investigated whether motor learning deficits in cerebellar patients could be ameliorated with neuromodulation or training-related interventions, under experimental conditions, hoping to support the development of interventions relevant for application in a clinical setting
Distribution and kinematics of atomic and molecular gas inside the Solar circle
The detailed distribution and kinematics of the atomic and the CO-bright
molecular hydrogen in the disc of the Milky Way inside the Solar circle are
derived under the assumptions of axisymmetry and pure circular motions. We
divide the Galactic disc into a series of rings, and assume that the gas in
each ring is described by four parameters: its rotation velocity, velocity
dispersion, midplane density and its scale height. We fit these parameters to
the Galactic HI and CO (J=1-0) data by producing artificial HI and CO
line-profiles and comparing them with the observations. Our approach allows us
to fit all parameters to the data simultaneously without assuming a-priori a
radial profile for one of the parameters. We present the distribution and
kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI)
regions of the Galaxy. Our best-fit models reproduces remarkably well the
observed HI and CO longitude-velocity diagrams up to a few degrees of distance
from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show
very similar kinematics. The rotation curves traced by the HI and H2 follow
closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface
densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown
by some nearby barred galaxies, b) local overdensities that can be interpreted
in terms of spiral arms or ring-like features in the disk. The HI (H2)
properties are fairly constant in the region outside the depression, with
typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of
0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc.
We also show that the HI opacity in the LAB data can be accounted for by using
an `effective' spin temperature of about 150 K: assuming an optically thin
regime leads to underestimate the HI mass by about 30%.Comment: 23 pages, 24 figures. Accepted by A&
Finding faint HI structure in and around galaxies: scraping the barrel
Soon to be operational HI survey instruments such as APERTIF and ASKAP will
produce large datasets. These surveys will provide information about the HI in
and around hundreds of galaxies with a typical signal-to-noise ratio of
10 in the inner regions and 1 in the outer regions. In addition, such
surveys will make it possible to probe faint HI structures, typically located
in the vicinity of galaxies, such as extra-planar-gas, tails and filaments.
These structures are crucial for understanding galaxy evolution, particularly
when they are studied in relation to the local environment. Our aim is to find
optimized kernels for the discovery of faint and morphologically complex HI
structures. Therefore, using HI data from a variety of galaxies, we explore
state-of-the-art filtering algorithms. We show that the intensity-driven
gradient filter, due to its adaptive characteristics, is the optimal choice. In
fact, this filter requires only minimal tuning of the input parameters to
enhance the signal-to-noise ratio of faint components. In addition, it does not
degrade the resolution of the high signal-to-noise component of a source. The
filtering process must be fast and be embedded in an interactive visualization
tool in order to support fast inspection of a large number of sources. To
achieve such interactive exploration, we implemented a multi-core CPU (OpenMP)
and a GPU (OpenGL) version of this filter in a 3D visualization environment
().Comment: 17 pages, 9 figures, 4 tables. Astronomy and Computing, accepte
3-D interactive visualisation tools for HI spectral line imaging
Upcoming HI surveys will deliver such large datasets that automated
processing using the full 3-D information to find and characterize HI objects
is unavoidable. Full 3-D visualization is an essential tool for enabling
qualitative and quantitative inspection and analysis of the 3-D data, which is
often complex in nature. Here we present , an open-source
extension of 3DSlicer, a multi-platform open source software package for
visualization and medical image processing, which we developed for the
inspection and analysis of HI spectral line data. We describe its initial
capabilities, including 3-D filtering, 3-D selection and comparative modelling
The Westerbork HI Survey of Spiral and Irregular Galaxies I. HI Imaging of Late-type Dwarf Galaxies
Neutral hydrogen observations with the Westerbork Synthesis Radio Telescope
are presented for a sample of 73 late-type dwarf galaxies. These observations
are part of the WHISP project (Westerbork HI Survey of Spiral and Irregular
Galaxies). Here we present HI maps, velocity fields, global profiles and radial
surface density profiles of HI, as well as HI masses, HI radii and line widths.
For the late-type galaxies in our sample, we find that the ratio of HI extent
to optical diameter, defined as 6.4 disk scale lengths, is on average 1.8+-0.8,
similar to that seen in spiral galaxies. Most of the dwarf galaxies in this
sample are rich in HI, with a typical M_HI/L_B of 1.5. The relative HI content
M_HI/L_R increases towards fainter absolute magnitudes and towards fainter
surface brightnesses. Dwarf galaxies with lower average HI column densities
also have lower average optical surface brightnesses. We find that lopsidedness
is as common among dwarf galaxies as it is in spiral galaxies. About half of
the dwarf galaxies in our sample have asymmetric global profiles, a third has a
lopsided HI distribution, and about half shows signs of kinematic lopsidedness.Comment: Accepted for publication in A&A. 18 pages. 39 MB version with all
figures is available http://www.robswork.net/publications/WHISPI.ps.g
Nanoscale mapping and control of antenna-coupling strength for bright single photon sources
Cavity QED is the art of enhancing light-matter interaction of photon emitters in cavities, with opportunities for sensing, quantum information and energy capture technologies. To boost emitter-cavity interaction, i.e. coupling strength , ultrahigh quality cavities have been concocted yielding photon trapping times of µs to ms. However, such high-Q cavities give poor photon output, hindering applications. To preserve high photon output it is advantageous to strive for highly localised electric fields in radiatively lossy cavities. Nanophotonic antennas are ideal candidates combining low-Q factors with deeply localised mode volumes, allowing large , provided the emitter is positioned exactly right inside the nanoscale mode volume. Here, with nanometre resolution, we map and tune the coupling strength between a dipole nanoantenna-cavity and a single molecule, obtaining a coupling rate of max ~ 200 GHz. Together with accelerated single photon output, this provides ideal conditions for fast and pure non-classical single photon emission with brightness exceeding 10E9 photons/sec. Clearly, nanoantennas acting as “bad” cavities offer an optimal regime for strong coupling , to deliver bright on-demand and ultrafast single photon nanosources for quantum technologies.Peer ReviewedPostprint (author's final draft
- …