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Soon to be operational HI survey instruments such as APERTIF and ASKAP will produce large datasets.
These surveys will provide information about the HI in and around hundreds of galaxies with a typical
signal-to-noise ratio of ~10 in the inner regions and ~1 in the outer regions. In addition, such surveys
will make it possible to probe faint HI structures, typically located in the vicinity of galaxies, such as
extra-planar-gas, tails and filaments. These structures are crucial for understanding galaxy evolution,
particularly when they are studied in relation to the local environment. Our aim is to find optimized
kernels for the discovery of faint and morphologically complex HI structures. Therefore, using HI data
from a variety of galaxies, we explore state-of-the-art filtering algorithms. We show that the intensity-
driven gradient filter, due to its adaptive characteristics, is the optimal choice. In fact, this filter requires
only minimal tuning of the input parameters to enhance the signal-to-noise ratio of faint components.
In addition, it does not degrade the resolution of the high signal-to-noise component of a source. The
filtering process must be fast and be embedded in an interactive visualization tool in order to support
fast inspection of a large number of sources. To achieve such interactive exploration, we implemented
a multi-core CPU (OpenMP) and a GPU (OpenGL) version of this filter in a 3D visualization environment

Keywords:
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(SlicerAstro).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Radio data are intrinsically noisy and most sources are faint and
often extended (see for example the WHISP catalog, van der Hulst
et al.,, 2001). Very faint coherent HI signals, below a 3 sigma rms
noise level, are difficult to find (Popping et al., 2012). Depending
on the source structure, spatial and/or spectral smoothing can
increase the signal-to-noise ratio. Smoothing is usually applied
to multiple spatial and spectral scales to ensure that sources of
different size are extracted at their maximum integrated signal-
to-noise ratio.

In upcoming blind HI surveys such as WALLABY, using the
ASKAP telescope (Johnston et al., 2008; Duffy et al,, 2012), and
the shallow and medium-deep APERTIF surveys, using the WSRT
telescope (Verheijen et al., 2009), source finding will be a major
concern. Source finders (e.g., Whiting, 2012; Serra et al., 2015) are
designed to automatically detect all the sources in the field and
to achieve this goal they must employ an efficient mechanism to
discriminate between interesting candidate sources and noise. Due

* Corresponding author.
E-mail address: D.Punzo@astro.rug.nl (D. Punzo).
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to the complex 3-D nature of the sources (Sancisi et al., 2008) and
the noisy character of the data, constructing a fully automated and
reliable pipeline is not trivial. Popping et al. (2012) reviewed the
current state of the art and described the issues connected with
the noisy nature of the data, and the various methods and their
efficiency.

In the source-finding process, masks are generated enclosing
the sources. The determination of the final masks involves a variety
of filtering operations in order to pick up faint and extended
emissions. However, users are ultimately provided with the mask
and data products determined from the original data within the
masks. In order to examine the original data within and around
the mask, to check the performance of the source finding process
and to investigate whether all faint structures have been included,
it is necessary to have a visualization tool that not only shows the
original data and the mask, but also has the ability to interactively
filter the data to bring out the very faint structures in the data.

Our goal therefore is the development of a suitable filtering
method in a 3D visualization environment that maximizes the local
signal-to-noise ratio of the very faint structures (signal-to-noise
ratio ~ 1) while preserving its specific 3-D structure (e.g. tidal
tails, filaments and extra-planar gas). Ideally, the method should
be adaptive (in such a way that the user does not have to explore a
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large parameter space to get the best result), interactive, and fast,
i.e. applicable in real-time. In this paper, we explore a number of
existing filtering methods in combination with a 3D visualization
tool (Punzo et al.,, 2015) in order to find a method fulfilling such
requirements.

In Section 2 we describe the datasets used for our investigation
and in Section 3 we give an overview of state-of-the-art filtering
packages and algorithms, with a focus on radio astronomy. We also
describe the filtering techniques chosen for the analysis performed
in this paper. In Section 4 we report an analysis of the best
parameters for each of the filtering methods. In Sections 5 and 6
we test the quality and the performance of the filtering algorithms
implemented. In Section 7 we discuss the overall results and
conclude that the adaptive method is the best solution for our
problem.

2. Test cases

In this section, we briefly describe the variety of models and
observational datasets used as test cases. Our sample selection was
based on two criteria:

(a) data cubes with low signal-to-noise features such as tails,
extra-planar gas and filaments;

(b) clean data cubes, i.e. with negligible, or at most minor, artifacts
due to calibration and imaging effects.

The consequence of the second criterion is that the filtering
results presented in the next sections will be representative for
data cubes mainly affected by Gaussian noise.

2.1. Models

We generated several models by taking an existing observation
and isolating the detected signal manually. The object (NGC3359),
and hence the model, consists of the HI content in a spiral
galaxy and a small companion, with an incomplete tidal tail-like
structure between them. Gaussian noise has been added with the
GIPSY (van der Hulst et al,, 1992; Vogelaar and Terlouw, 2001)
routine RANDOM to produce models with different peak signal-
to-noise ratio: 22, 32 and 62, named ModelA, ModelB (see Fig. 1)
and ModelC respectively. The signal-to-noise properties of ModelB
are the closest to the observational data shown in this paper.
Therefore, ModelB will be used as the main reference model.

The data cube size is 6.7 x 10° voxels. The beam size is ~88" x
70”. The pixel spacing is:

1. 20” in Right Ascension (RA), i.e. the data up to ~4 neighboring
pixels are correlated.

2. 20” in Declination (Dec), i.e. the data up to ~3 neighboring
pixels are correlated.

3. 8.25 km/s in velocity. The pixels in the velocity direction are not
correlated.

These numbers contribute to determining both the optimal width
of the filter kernel (see Section 4) and the number of independent
voxels, that is N = 5.6 x 10%,

2.2. NG(4111

NGC4111 is one of the brightest lenticular galaxies in the
Ursa Major cluster. The main characteristic of the HI emission of
NGC4111 is an extended faint filament between the three sources
of the datacube. The orientation and kinematics of this filament
suggest that the galaxies were tidally stripped from the outer disks
by their nearby companions (Verheijen, 2004).

In Fig. 2, we show a volume rendering of the HI data (Busekool
and Verheijen, in preparation) observed with the Very Large Array,
VLA, telescope. The size of the data cube is 1.6 x 10° voxels. The
beam size is ~45" x 45”. The pixel spacing is:

Fig. 1. Views of modelB. The upper panel shows a volume rendering of the model
(information regarding the model is given in Section 2.1) with added Gaussian noise.
The bottom panel shows a volume rendering of the smoothed version using an
intensity-driven gradient filter with parameters K = 1.0, 7 = 0.0325,n = 20
and Gy, , = 5. The different colors highlight different intensity levels in the data:
green, blue and red correspond to 3, 7 and 15 times the rms noise respectively. The
region of interest, ROI (i.e. the black box), highlights the faint signal, i.e. part of a
very faint tail. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

1. 15” in RA, i.e. the data are correlated up to ~3 neighboring
pixels.

2. 15” in Deg, i.e. the data are correlated up to ~3 neighboring
pixels.
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Fig.2. Aview ofthe Hlin and around NGC4111 (information regarding the dataset
is given in Section 2.2; Busekool and Verheijen, in preparation). The different colors
highlight different intensity levels in the data: green, blue and red correspond to 3,
7 and 15 times the rms noise respectively. The region of interest, ROI (i.e. the black
box), highlights the faint signal, i.e. a faint filament between three galaxies. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3. 5 km/s in velocity. The data are correlated over 2 neighboring
pixels because of the use of Hanning smoothing in velocity.

The resulting number of independent voxels is N = 8.9 x 10%.

2.3. NGC3379

NGC3379 is an elliptical galaxy in the Leo group. The HI
associated with this galaxy is characterized by a very large,
extended tail. Part of this tail, such as the wing-shape structure
close to the galaxy, is very faint.

In Fig. 3 we show a volume rendering of the HI data observed
with the WSRT telescope by Serra et al. (2012). The size of the data
cube is 3.6 x 107 voxels. The beam size is 81” x 32”. The pixel
spacing is:

1. 10” in RA, i.e. the data are correlated up to ~8 neighboring
pixels.

2. 10” in Dec, i.e. the data are correlated up to ~3 neighboring
pixels.

3. 8.25 km/s in velocity. The data are correlated over 2 neighboring
pixels because of the use of Hanning smoothing in velocity.

The resulting number of independent voxels is N = 7.5 x 10°.

2.4. WEINO69

The HI data cube of WEINO69 used in this paper is a small
sub-cube selected from a large mosaic of 48 WSRT pointings
(Ramatsoku et al., 2016), directed towards a region in the sky
where a filament of the Perseus-Pisces Supercluster (PPScl) crosses
the plane of the Milky Way. The optical counterpart, WEINO69, has
been observed by Weinberger et al. (1995).

The data cube is shown in Fig. 4. It contains two sources,
WEINO069 and a companion, a tidal tail and a very faint filament

Fig. 3. Two views of the HI in and around NGC3379 (information regarding
the dataset is given in Section 2.3; Serra et al., 2012). The upper panel is the
volume rendering of the original resolution data. The bottom panel shows a volume
rendering of the smoothed version using an intensity-driven gradient filter with
parameters K = 1.5, 7 = 0.0325,n = 20 and C;,, = 5. The different colors
highlight different intensity levels in the data: green, blue and red correspond to
3, 7 and 15 times the rms noise respectively. The region of interest, ROI (i.e. the
black box), highlights the faint signal, i.e. a faint wing-shape tidal structure. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

that connects the two galaxies. Its size is 7.8 x 10° voxels. The beam
size is ~15” x 15”. The pixel spacing is:

1. 6”inRA, i.e. the data are correlated up to ~3 neighboring pixels.

2. 6” in Dec, i.e. the data are correlated up to ~3 neighboring
pixels.

3. 8.25km/s in velocity. The data are correlated over 2 neighboring
pixels because of the use of Hanning smoothing in velocity.

The resulting number of independent voxels is N = 4.3 x 10%.
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1) Original

2) Box Q

Fig. 4. The HIin and around WEIN069 (information regarding the dataset is given in Section 2.4; Weinberger et al.,, 1995; Ramatsoku et al., 2016). The four panels show:
(1) avolume rendering of the original resolution data; (2) the data filtered with a box filter with parameters N, , , = 7 pixels; (3) the data filtered with a Gaussian filter with
parameters FWHM, , , = 5 pixels; (4) the data filtered with an intensity-driven gradient with parameters K = 1.5, 7 = 0.0325, n = 20 and G, = 5. The different colors
highlight different intensity levels in the data: green, blue and red correspond to 3, 7 and 15 times the rms noise respectively. The region of interest, ROI (i.e. the black box),
highlights the faint signal, i.e. a faint filament between the two companions. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

3. Filtering techniques

In this paper, we focus on interactive filtering of radio data
coupled to interactive visualization. The aim is to enhance the
manual data inspection, in particular of low signal-to-noise HI
structures.

In the next subsections, we list the filtering algorithms used in
our analysis in Section 4. The techniques described are aimed to
suppress the Gaussian white noise. Moreover, such filters perform
well for data with the following characteristics:

(i) signal extended over many pixels;
(ii) rather small spatial intensity derivatives, i.e. no sharp edges.

Data of HI in and around galaxies fall into this class. A good
example is presented in Fig. 4, one of the data cubes of our sample.

Artifacts generated by effects such as Radio Frequency Interfer-
ence (RFI), errors in the bandpass calibration or in the continuum
subtraction have different statistical properties. Other filter tech-
niques are required to efficiently characterize these artifacts, tai-
lored to their special spatial and spectral signature. In this paper
we focus on ‘clean’ data cubes that are considered free from such
artifacts.

For a full review of image processing techniques we refer to
Goyal et al. (2012); Buades et al. (2005); Gonzalez and Woods
(2002); Weeks (1996).

It is also worthwhile to mention the following automated seg-
mentation methodologies (i.e. automated source mask genera-
tion):

1. SoFiA (Serra et al., 2015): this pipeline has several tasks for
smoothing, source finding and mask optimization. A graphical
user interface is also available. Three source-finder algorithms
are available: (i) a threshold finder; (ii) a Smooth and Clip
(S-C) finder, which applies thresholding after smoothing the
data with a set of user-specified Gaussian kernels and then

merges the results; (iii) the CNHI finder, which performs a
threshold rejection Kuiper test on extracted 1-D spectra. The
completeness and reliability of detected sources are evaluated
through statistical evaluation of parameters such as the peak
flux, total flux, and number of voxels of both positive and
negative detections. (Serra et al., 2012).

2. Duchamp (Whiting, 2012): this pipeline mainly uses a multi-
resolution wavelet transform (specifically the a trous algo-
rithm; Starck and Murtagh, 1994) for thresholding the data in
the wavelet domain. False detections are rejected using the false
discovery rate technique (Hopkins et al., 2002).

3. MAX-TREE (Carlinet and Géraud, 2014): this is a tree represen-
tation of the data of which the different nodes are classified
based on their attributes. These attributes are used to determine
the properties of the node (for more information see Teeninga
et al. (2015a)). This algorithm has been applied both to inter-
active visualization (Westenberg et al., 2007) and optical 2-D
data (MT objects; Teeninga et al., 2015a,b). Preliminary experi-
ments are also ongoing for HI data (MT source finder; Moschini
et al., 2014; Arnoldus, 2015).

3.1. Box filter

The mean filter (the box filter) simply consists of replacing
each pixel value in an image with the mean value of its neighbors,
including itself. This has the effect of eliminating pixel values that
are unrepresentative of their surroundings.

The box filter is a convolution filter. Like other convolutions,
it is based on a kernel that represents the shape and size of
the neighborhood to be sampled when calculating the mean. Box
filtering is most commonly used as a simple method for reducing
noise in an image (see Fig. 4). However, it has the following
drawbacks:
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(a) asingle pixel with a strong artifact, such as RFI, can significantly
affect the mean value of all the pixels in its neighborhood,;

(b) when the filter neighborhood straddles an edge, the filter will
blur that edge, leading to a loss of information if the edge is
sharp. For HI data this is rarely the case: the effect is visible
around the green edges (3 rms) of the HI filament (see second
panel in Fig. 4). It is a second order effect which only partially
degrades the smoothing quality (i.e., the main structure is still
visible).

In general, the box filter acts as a low pass filter and, therefore,
reduces the spatial intensity derivatives present in the image. The
computational complexity of the box filter is O(N?), where N is the
number of voxels.

3.2. Gaussian filter
The Gaussian filter is a 3-D convolution operator that is used to

denoise images by smoothing. The kernel is the following Gaussian
function:

_ ( (";X(Z))2 + (J’;}'(Z))z + (Z;Z%)Z >
0, T, (of
G(x,y,z) = Aexp * Y =/, (1

where the parameters oy, 0y, 0, are related to the full width at half
maximum (FWHM) of the peak according to

FWHM; = 24/2In(2)0;, i = x,Y, z, (2)

which determines the degree of smoothing. The 3-D kernel can be
also rotated:

K(x,y,z) = R,(0;) Ry(6)) R«(6x) G(x,¥,2), (3)

where Ry, Ry and R, are the Euler rotation matrices corresponding
to the three Euler angles 6,, 6, and 6,.

Once a suitable kernel has been calculated, then the Gaussian
smoothing can be performed using standard convolution methods.
The computational complexity of the Gaussian filter is O(N3).

When the convolution kernel is isotropic (ox = o0, = o),
the convolution can be performed much faster since the equation
for the 3-D isotropic Gaussian is separable into the three axial
components. Thus, the 3-D convolution can be performed with
three separate 1-D Gaussian convolutions. The computational
complexity is then lowered to O(N).

The Gaussian filter outputs a weighted average of each pixel’s
neighborhood, with the average weighted more towards the value
of the central pixels. This is in contrast to the box filter’s uniformly
weighted average. Because of this, a Gaussian provides gentler
smoothing and preserves edges better than a similarly sized mean
filter (Buades et al., 2005). For HI data, this effect is minor, however
itis possible to observe some small differences at the 3 rms level in
Fig. 4 (in the 3-D views the faint signal and noise at the 3 rms level
are highlighted in green). These discrepancies increase with larger
kernels.

In order to increase the local signal-to-noise ratio of the very
faint signal, both the box and the Gaussian filter have to use large
kernels for the convolution (Buades et al., 2005). The main draw-
back of these filters is the loss of the spatial information with high
signal-to-noise ratio, i.e. the inner region of the galaxy as shown in
the second and third panels in Fig. 4. In the next subsection, we will
introduce the intensity-driven gradient filter which is designed to
deal with this issue by adaptive smoothing depending on the local
signal-to-noise ratio and structure in the data.

3.3. Intensity-driven gradient filter

The gradient filter (Perona and Malik, 1990) operates on the
differences between neighboring pixels, rather than on the pixel

values directly. The algorithm, known also as anisotropic diffusion,
uses a diffusion process described by the following differential
equation:

ol(x,y,z,t
% =5 y,z,0)Al(x,y,2, )

+VS(x,y,z,t) - VIx,y,2,t), (4)

where [ is the intensity of the pixel and S is the diffusion coefficient.
The algorithm was designed for edge detection by choosing:
1

IVIxy.z.D?
T+ K2

Sk.y.z,t) = (5)

Instead of having the degree of blurring be dependent on the
magnitude of the gradient, it can also be made dependent on other
properties, such as the squared image intensity (Perona and Malik,
1990; Arnoldus, 2015):

1
1 Pxyzt)

K2 rms?

Substituting Eq. (6) in Eq. (4), we obtain a diffusion algorithm
which preserves the edges less well, but it adaptively smooths
the pixel intensity (i.e. more smoothing for lower signal-to-noise
ratio). The second term of Eq. (4) can be neglected as shown
by Perona and Malik (1990) and we use their approach for the
discretization of Eq. (4). The discretized form of this approximation
for the ith and i 4 1th iteration is:
GVl + GVl + G, V. )
3 )
1+ sy

K2 rms?

S(x,y,z,t) = (6)

lijnw=L+rt

where the algorithm evaluates this expression n times from
i = 0toi = n. I; = IxY,2z), Vil indicates the nearest-
neighbor differences defined as [I(x+ 1,y,z) —I(x,y,2)] +
[I(x—1,y,z) —I(x,y,2)], rms is the noise level in the data
cube and 7, G, G, C; and K are input parameters. The input
parameters have the following upper and lower limits: (i) T ranges
in [0.0025; 0.0625]; (ii) G, C, and C, range in [0; 10]; (iii) K ranges
in [0.5, 10]. We define the following default parameters: K = 1.5,
T =0.0325,n=20,Gc =(C, =(C, =5.

The intensity-driven gradient filter is intrinsically adaptive and
is therefore a very powerful tool for investigating low signal-to-
noise, extended emission such as tails, filaments and extra-planar
gas. The fourth panel in Fig. 4 shows an example of gradient
smoothing. In the inner part of the galaxy (shown in red at lev-
els above 15 rms) the full resolution is conserved remarkably well,
while the fainter structure in the outer part shown in green (i.e. the
filament at 3 rms) has been enhanced at the expense of resolu-
tion. A disadvantage of the adaptive smoothing process is that
it does not conserve the flux scale. The consequence is that the
results can be used for visualization purposes, but not for quan-
titative analysis. Operations such as calculating column densities,
intensity weighted mean velocities, velocity dispersions etc., must
be performed on the original data cube or properly convolved ver-
sions. The computational complexity of the intensity-driven gradi-
ent filter is O(n N).

3.4. Wavelet filter

Wavelet transformations are used to obtain a multiresolution
representation for analyzing the information content of images. An
advantage is that in the wavelet domain it is easier to discriminate
the signal from the noise of the image. The decomposition
process, mathematically reversible, defines a multiresolution
representation (for more information, see Mallat, 1999). In
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this paper, we restricted ourselves to wavelet transformations
using the orthogonal Haar wavelet (Daubechies and Sweldens,
1998) and the biorthogonal Le Gall 5/3 wavelet (known also
as Cohen-Daubechies-Feauveau 5/3, CDF 5/3, wavelet; Gall and
Tabatabai, 1988).

To obtain a wavelet representation, we used a wavelet lifting
algorithm (Daubechies and Sweldens, 1998). Wavelet lifting
consists in applying low and high pass filters, corresponding to
the chosen wavelet, at different resolutions. At each resolution,
the low pass filter generates an approximation band, c', and the
high pass filter generates the detail band, d', both of length N /2!
elements, where [ is the value of the decomposition level. The
approximation bands represent the coarse features in the data,
while the detailed bands represent the fine features. The fine
features are the differences between the full resolution data and
the new coarse version. The detailed bands are used to restore the
original data from the coarse resolution.

The wavelet lifting algorithm is performed in 3 steps:

(1) Splitting: this step splits a signal into two sets of coefficients,
those with even and those with odd index, indicated by even'
and odd'. This is called the lazy wavelet transform.

(2) Prediction: as the even and odd coefficients are correlated, we
can predict one from the other:

d"H1 = odd"! — P(even®™h), (8)

where i, is the index for the ith array element, and the predict
operator, P, in the case of the Haar wavelet, is

P(even®) = even®.. (9)
(3) Update: similarly to the prediction step

1 = even'! + U(odd™), (10)
where the update operator, U, for the Haar wavelet, is

) di,l+1
U(odd"™ ) = — (11)

An image is then denoised by applying thresholding to the
detail bands. Performing wavelet lifting does not require additional
memory. In addition, the computational complexity of wavelet
lifting is O(N) which makes the algorithm extremely fast.

Wavelet lifting has been widely used as a tool for image
denoising in several fields. A practical example of an application of
image denoising with wavelet transforms in the case of functional
magnetic resonance imaging (fMRI) can be found in Wink and
Roerdink (2004).

In Fig. 5, we show filtering results based on the Haar and Le
Gall 5/3 wavelets. We pre-smoothed the data with a Gaussian
filter with parameters FWHMy, , = 5, then we decomposed the
signal up to the third decomposition level and we finally applied
thresholding to the approximation and detail bands. We note that,
in general, wavelet denoising algorithms for suppressing Gaussian
noise apply thresholding only to the detail bands. However, in the
case of HI data, we discovered that it is necessary to threshold
both the detail and approximation bands to properly isolate the
signal from the noise (the signal is extremely faint). As a result
the algorithm is effectively a thresholding filter. The values of
the thresholding parameters, t; yaveler, Used are: (i) ty ggar = 0.5,
ty Haor = 0.8 and t5 pygor = 1.1 times the rms of the original data
cube for the Haar wavelet; (ii) t1 ecan = 1, t2,1ecan = 1.4 and
t3.1ecan = 1.7 times the rms of the original data cube for the Le Gall
5/3 wavelet. Throughout this paper the thresholding parameters
will always be defined in units of the rms of the original data cube.
Comparing the three panels in Fig. 5, one can clearly see that the

1)2 rms

™ =7

Fig. 5. Three volume renderings of WEINOG9. In the upper panel, we show the
filtered data applying a 2 rms thresholding. In the middle and lower panels the data
are filtered with a Haar and Le Gall wavelet thresholding filter, respectively. We
performed the decomposition up to level I = 3 for both wavelets, then we applied
thresholding. In all the cases, we pre-smoothed the data with the same Gaussian
filter with parameters FWHM,, , = 5 pixels. The different colors highlight different
intensity levels in the data: green, blue and red correspond to 3, 7 and 15 times the
rms noise respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

wavelet filters remove the noise efficiently with minimal loss of
the signal.

The algorithms used have, however, some drawbacks. The Haar
filter looses resolution at low signal-to-noise ratio due to the
averaging of neighborhood pixels. The Le Gall 5/3 filter applies
an additional degree of smoothing and generates clear artifacts as
shown in Fig. 5.

Although the output images obtained by wavelet denoising
algorithms are affected by artifacts, wavelet thresholding is very
promising when compared to a simple 2 rms thresholding filter.
On the other hand, to use wavelet thresholding effectively we
encountered the following complications:

(1) finding the right multi-level thresholds in the wavelet space is
a rather difficult task, which highly depends on the signal-to-
noise ratio of the faint signal in the wavelet domain;

(2) the choice of the decomposition level, I, and of the wavelet
highly depends on the spatial and velocity extents of the
unknown faint signal (e.g. higher order wavelets may give
different results).
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A full investigation to determine the optimal wavelet, decom-
position level and threshold values for denoising HI data with a
wide range of properties will be extremely useful. Floer and Winkel
(2012) provided an analysis and application of wavelet filters for
source finding. They demonstrated that separating the wavelet
analysis of the spatial dimensions from the velocity dimension in-
creases the filtering quality. However, their study focused on non-
resolved galaxies. In the case of well-resolved galaxies the presence
of faint and unusual HI structures adds even more complexity to
the problem. We will discuss this further in Section 7.

4. Optimal filtering parameters

In Section 3, we qualitatively illustrated the filtering results
of applying box, Gaussian, intensity-driven gradient, and wavelet
lifting algorithms to the WEINO69 data cube (Fig. 4). In this section,
we compare quantitatively the box, Gaussian and intensity-driven
gradient filtering output, for the full sample defined in Section 2.
In order to quantify the smoothing quality, we define a diagnostic
parameter:

S
F = | o,f| i (12)
S0.0l
where
Sor =Y b(xy,2) My(x,y,2)
(*,y,2)
(13)
Soo=Y_ b(x.y.2) My(x.y. 2),
(*,y,2)
. — 1 ifIi(X7 Y, Z) >3 rms;, i= 09f
Mix.y.2) = {O ifi(x,y,2z) < 3rms;. (14)

In the previous equations, rms; is the root mean square
(i.e.noise level), [;(x, y, z) is the intensity of the pixel at coordinates
(x,y, z), the index o refers to the original data cube and f to the
filtered one. The coordinates (x, y, z) range in a ROI sub-cube of a
faint signal as shown (with a black box) in Figs. 1-4. Moreover, the
values of the sums S, , and S, , in Eq. (13), are always calculated
on the pixel intensity values of the original data cube. Therefore, it
represents a measurement independent of the filtering technique
used.

The F parameter can range between [0, M] where M is an
unknown upper limit (see Section 5). The parameter has a different
meaning depending on its range:

(i) F € [0, 1]: the smoothing has washed out the faint signal. This
can easily happen using box or Gaussian kernels that are too
large.

(ii) F € [1, M]: the faint signal has been enhanced and the number
of voxels in the mask M is generally larger than in M,. The F-
value is correlated with the smoothing quality. For high values
of F, the filtered data cube has more signal raised over its 3 rms
noise level.

The error, oF, is propagated as:

aF \° L(F 2
OfF = g a
f 3Sos ) Sor T\ 8S,,/) e

2
Usu,f

2 4
So,o So,o

2 2
Soyf * Gsa,a

: (15)

where S, , and S, are affected by an error due to the Gaussian
noise background equal to

Os,; = \/ﬁ,-rmsi. (16)

In the last equation i is an index which is either f or o, N; is the
number of independent voxels in the mask M; and we assumed the
rms; to be constant in the full data cube.

We report the values of the F parameter (F-values) in Table 1,
in which the best runs and their parameters are reported for each
data cube and filter. The results shown in the table are due to a
fine-tuning process of the parameter space based both on visual
inspection of the data and evaluation of the F-values. The specific
input parameter space for each algorithm is:

(1) box filter: N; = 1,3,5 for the Models; N; = 5,7,9 for
WEIN069, NGC4111 and NGC3379;

(2) Gaussian filter: FWHM; = 1, 3,5 for the Models; FWHM; =
3, 5, 7 for WEIN069, NGC4111 and NGC3-379;

(3) wavelet filter: | = 1, 2, 3;
t1.Haor = 0.1,0.3,0.5,0.7, 0.9,
t2.Haar = 0.4, 0.6, 0.8, 1.0, 1.2,
t3 gaar = 0.7,0.9, 1.1, 1.3, 1.5,
t1.tecan = 0.6, 0.85, 1.1, 1.35, 1.6,
t2.1ecan = 0.9, 1.15, 1.4, 1.65, 1.9,
t3.ecan = 1.2, 1.45, 1.7, 1.95, 2.2;

we also pre-smoothed the data with a Gaussian filter with
parameters FWHM, , , = 3 for the models; FWHM,,, = 5
for WEIN069, NGC3379 and NGC4111;

(4) intensity-driven gradient filter: K = 0.5, 1, 1.5, 2; n = 20, 30;
T = 0.0325, 0.0625; ; = 4, 5, 6;

where j = X, Y, z. Note that a detailed tuning parameter search
can be performed iteratively at higher resolutions (Bergner et al.,
2013). However, the input parameter sample used is accurate
enough for finding optimal F-values and, therefore, for judging
which are the best input parameters. This has been checked by
performing the analysis also with a higher resolution sampling of
the input parameters.

Moreover, in our parameter space investigation, we chose to
set the rotation parameters for the Gaussian filter, 6;, to zero to
reduce the large input parameters space. This does not introduce
a substantial bias in our investigation because the dependences of
the results on the rotation parameters are negligible. In fact, for
our sample only filtering results for WEINO69 show a dependence
of the F-parameter on the Euler rotation angles. In the other cases
the faint signal is mainly oriented along one of the primary axes,
e.g. NGC3379, or it has a more complex morphology such as the
S-shaped filament in NGC4111 or arc-shaped tail in the models. As
example, in Table 2, we report the F-values of filtering WEIN069
with a rotated Gaussian kernel. The results show that a particular
rotation, run I, 6, = 340°, increases the F parameter by a factor of
7.5%, while in run 11, 6, = 340°, it is smaller by a factor of 9.2%. This
is expected, in fact, since most of the faint signal is aligned along
a diagonal axis, corresponding to the x-axis rotated by 340° with
respect to the y-axis. Therefore, in run III the kernel is aligned to
the faint signal, while in run II it is perpendicular to it.

For the wavelet filters, we performed a pre-smoothing step with
a Gaussian filter. This was necessary for increasing the signal-to-
noise ratio and providing the optimal results shown in this paper
using as maximum decomposition level | = 3. We experienced
that, in the case of HI data, performing a Haar or Le Gall wavelet
analysis beyond the third decomposition level gives rise to many
artifacts.
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Table 1

Best runs are reported. We performed the selection evaluating the F-values and confirming it by visual inspection.
The filter index entries are respectively: (1) box; (2) Gaussian; (3) wavelet lifting thresholding (with Gaussian pre-
smoothing); (4) intensity-driven gradient; The parameters N and FWHM are defined in pixel units. The parameters
t waveler are defined in units of rms noise level of the original data cube. The parameters [, K, 7, n and C are

dimensionless.

Data cube Filter Best input parameters F
1 Ny=3;Ny=3;N, =1 1.1996 + 0.0307
ModelA 2 FWHMy = 3; FWHM, = 3; FWHM, = 1 1.1946 + 0.0286
3 Haar wavelet ;[ =2;t; =0.7;t; = 1.0 3.8251 + 0.0778
4 K=1,7=00325n=20;G=4C =5 =4 2.1787 + 0.0463
1 Ny=3;N,=5N,=3 1.2975 £ 0.0196
ModelB 2 FWHM, = 3; FWHM, = 5; FWHM, = 3 1.5959 + 0.0228
3 Haar wavelet ;[ = 2;t; = 0.7; t, = 0.8 2.8515 + 0.0394
4 K=1,7=00325n=20;,G=5(=50C=4 2.3280 + 0.0339
1 Ny=5N,=5N,=1 1.0928 + 0.0078
ModelC 2 FWHM, = 5; FWHM, = 5; FWHM, = 1 1.2312 £ 0.0082
3 Haar wavelet ;[ = 2;t; = 0.9;t, = 0.6 1.1062 £ 0.0072
4 K=1,7=0.0325n=20;,=6;C,=6;C, =4 1.6407 + 0.0109
1 Ny=9;N,=7;N, =7 1.9967 + 0.0068
WEIN069 2 FWHM, = 7; FWHM, = 5; FWHM, = 5 2.2576 + 0.0076
3 Le Gall wavelet ; | = 3;t; = 0.6;t, = 1.9;t3 = 1.45 2.8999 + 0.0096
4 K =15;7=0.0325n=20;(G, =6, =5 =4 2.3392 £+ 0.0081
1 Ny=N,=N, =9 3.0789 + 0.0032
NGC4111 2 FWHM, = FWHM, = FWHM, =7 3.3057 4+ 0.0034
3 Le Gall wavelet; I = 3;t; = 1.1;t, = 0.9; t3 = 1.2 3.7505 + 0.0036
4 K=2;7=00325n=30;G=5C=6;C=5 2.9665 + 0.0031
1 Ny=Ny,=N, =9 5.6655 + 0.0078
NGC3379 2 FWHM, = FWHM, = FWHM, =7 5.9252 + 0.0081
3 Le Gall wavelet ; | = 3;t; = 0.6;t, = 1.15; t3 = 1.2 6.3993 + 0.0233
4 K=2,7=00325n=30,G=C(=C=6 5.2800 + 0.0072

Table 2
The F-values applying to WEINO69 a Gaussian filter with parameters FWHM,, = 7
pixels, FWHM,, , = 3 pixels, 6y, 6, and 6,.

Table 3

The F and Fyy-values for applying an intensity-driven gradient filter with parameters

K,t,n,Cyy, =5 to ModelB.

Run 6,(°) 6,(°) 6,() F oF Run K T n F Fu
I 0 0 0 2.0701 0.0071 1 05 0.0325 20 2.128 £ 0.032 0.237 + 0.004
1l 0 0 340 1.9776 0.0068 2 05 0.0625 20 1.322 4 0.021 0.149 + 0.003
1 0 340 0 2.1447 0.0073 3 05 0.0325 30 2.193 £ 0.033 0.263 + 0.003
4 05 0.0625 30 1.053 4+ 0.018 0.129 + 0.003
. . . 5 1 0.0325 20 2.328 4 0.034 0.364 + 0.003
In the next section, we will show detailed tests of the F- 6 1 00325 30 2.148 + 0.031 0.334 + 0.003
parameter to establish that this parameter is a reliable estimator 7 15 0.0325 2 1722 + 0.025 0.259 + 0.002
of the quality of the filtering results. In Section 6 we will present 38 15 0.0325 30 0.633 + 0.010 0.071 + 0.001
performance benchmarks of our parallel implementation of the 9 2 00325 20 0.701 + 0.011 0.079 + 0.001
filtering algorithms, and show that parallelization is necessary to 10 2 0.0325 30 0.263 = 0.006 0.024 £ 0.001

satisfy the interactivity requirement defined in Section 1.

5. Noise consideration

In this section, we further investigate the F-parameter defined
in Eq. (12) and its relations with the signal and noise. In fact, the
sum over a pure Gaussian noisy sub-cube is affected by a statistical
error equal to /N rms (i.e. the average differs from the zero value).
Moreover, applying the mask calculated in the smoothed data
cube, M, to the original data adds further complications: inside
the mask there will be a part of the faint signal (e.g. the peak in the
histogram of the middle panel in Fig. 6) and partially noise (e.g. the
left wing of the same histogram).

In the lower panel in Fig. 6 we show a plot of the F-values
calculated from masks obtained by spanning the thresholding
value of the mask My from zero to 4.5 rms. We performed the
calculation both on the sub-cube containing the faint signal (ROI
defined in Fig. 1) and three different sub-cubes, of the same
dimension as the ROI, in which there is only noise. In the case of the
ROI sub-cube, F increases with increased threshold. Vice versa, for
the noise sub-cubes, F decreases with increasing threshold and its
value is ~0 above 2.5 rms. Note that the threshold used in Section 4
for the masks M; is 3 rms.

|Smf|
M= ——", (17)
Sml
where
Smf= Y In(%.y.2) Mf(x.y.2)
(*,y,2)
(18)
Sm = Z In(x,y,2).
(*,y,2)

We define also the following parameter:

In these equations, the index m indicates the ModelB cube without
the Gaussian artificial noise. S;, is the integrated flux over the full
ROI sub-cube, therefore Fy, is the percentage of recovered signal in
the mask My and it ranges in [0;1]. My is defined in Eq. (14).

In Table 3 we report the Fy-values obtained by performing
the intensity-driven gradient filter on the ModelB data cube. The
table shows that an increase of the parameter F corresponds to an
increase of the parameter Fy,, i.e. more signal has been recovered in
the smoothing process. This is also supported by visual inspection
of the filtered data cubes. In Fig. 7, the faint signal is clearly
enhanced for higher values of F and Fy,.
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Fig. 6. The analysis of the histogram of the pixel intensity distribution and F-
parameter for ModelB. The upper panel shows the histogram of a sub-cube of
ModelB. The sub-cube selection is the ROI, the faint signal, defined in Fig. 1. The
red curve is a Gaussian fit over the histogram. The fitted parameters are: u =
35104 +1.0107%;0 = 7.0 107> £ 1.0 107%; bins = 75. In the middle panel,
the histogram applying the mask M; from run 5 (defined in Table 3) on the ROI
is shown. The output parameters of the fitting are: 4 = 1.4 1072 £ 1.6 1077;
o =5.110"2 £ 1.6; 1077; bins = 50. The lower panel is a plot of the F-values
calculated from masks obtained by spanning the thresholding values of the mask
Mgy from zero to 4.5 rms. The blue line corresponds to the F-values calculated on the
ROI sub-cube. The red, green and yellow lines correspond to the F-values calculated
on three different sub-cube, of the same dimension of the ROI, in which there is only
noise. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. In the four views, we look at a zoom of the ROI defined in Fig. 1. The
four panels present the same visualization of four different data cubes: (I) the
ModelB without the noise; (II) ModelB; (III) the filtering output obtained by run
4 (F = 1.053; see Table 3); (IV) the output from run 5 (F = 2.328; see Table 3). The
different colors highlight different intensity levels in the data: green, blue and red
correspond to 3, 7 and 15 times the rms noise respectively. The model in the first
panel has a rms value equal to zero. Therefore, we show only the green level. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

We performed the same analysis for ModelA and ModelC, with
similar results as the analysis performed on ModelB.

We conclude that the F-values are reliable and the noise effects
on the F-values, calculated at the 3 rms noise level, are minor or
negligible.

6. Performance

In this section, we provide measurements of the performance
of the codes' used in this paper. We performed the benchmark on
a Linux laptop (Ubuntu 15.10) equipped with:

- an Intel i7 2.60 GHz CPU,

- 16 GB of DDR3 1.6 GHz random access memory, RAM,

- an Intel HD Graphics 4600 graphics processing unit, GPU, (it can
use up to 1.7 GB of the RAM),

- an NVIDIA GeForce GTX860M GPU (with 2 GB of dynamic
random-access memory, DRAM).

We define the speedup, S, as
S(N) = T1(N)/T,(N), (19)

where T; is the execution time exploiting only one CPU core, T,
is execution time of the parallelized code and N the number of
voxels. The codes are parallelized both on CPU (OpenMP) and GPU
(OpenGL). In the case of the GPU implementation, the I/O times
(i.e. times for sending the data to the GPU and to getting the results
back) are included in the term Tj,.

We report the speedup results in Fig. 8, using the following
values for the input parameters of the filters:

(1) isotropic box: Ny = N, = N, = 3 pixels;

(2) anisotropic box: Ny = 3 pixels and N, = N, = 5 pixels;

(3) isotropic Gaussian: FWHM, = FWHM, = FWHM, = 3 pixels
and 6, =60, =6, =0°.

(4) anisotropic Gaussian: FWHM, = 2 pixels, FWHM, =

FWHM, = 3 pixelsand 6, = 6, = 6, = 0°;

1 The codes are publicly available at https://github.com/Punzo/SlicerAstro.
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Fig. 8. The values of speedup of the parallelization of the various filter algorithms are shown: (1) upper-left panel, isotropic box; (2) upper-right panel, anisotropic box; (3)
middle-left panel, isotropic Gaussian; (4) middle-right panel, anisotropic Gaussian; (5) bottom-left panel, intensity-driven gradient; (6) bottom-right panel, comparison of
the GPU (GTX860M) implementation of all filters. The values of the speedup S are calculated using Eq. (19). N is the number of voxels. The values of the input parameters

are defined in

(5) intensity-driven gradient: K = 1.5, 7 = 0.0325,n = 20 and

G =G

A number of conclusions can be drawn from Fig. 8. First, the
values of the speedup S for the CPU (8 cores) implementation for

Section 6.

=(, =5.

the various filters at different N are <4. Therefore, the execution

time for both the anisotropic box and Gaussian filter at large

N (~10%) is rather long: 1 min and 10 min, respectively. The
isotropic Gaussian filter at large N takes 14.5 s using 8 cores,
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while the execution time for the isotropic box filter is 2 s, and
56 s for the intensity-driven gradient filter. We also compared
our optimized CPU implementation of the isotropic Gaussian
filter with the one provided by the Insight Segmentation and
Registration Toolkit (ITK; Yoo et al., 2002). Our implementation,
using the same number of CPU cores (i.e. 8), showed a speedup by
a factor of 3 over the ITK version.

Secondly, very large values of S are found for the GPU imple-
mentation of the anisotropic box and Gaussian filters. For exam-
ple, in the case of anisotropic Gaussian filtering of NGC2841 (N =
1.4 x 108, i.e.529 MBytes; Walter et al., 2008), the execution time
improves from 35 min, using one CPU core, to 3.5 s exploiting the
GTX860M.

Thirdly, the values of S for the GPU implementation are smaller
for the isotropic box and Gaussian filters than for their anisotropic
counterparts. The GPU execution time for the isotropic Gaussian
filter with N = 1.4 x 10% is 1.8 s and therefore a factor of 2 smaller
than for the anisotropic Gaussian filter.

On the other hand the GPU execution time for the intensity-
driven gradient filter with N = 1.4 x 108 is 3.1 s, as compared
to 4 min with a single CPU core.

When examining the behavior in relation to the number of
voxels the following conclusions can be drawn. For a data cube
with a small number of voxels (N ~ 10°) the S values of
the GPU implementation for the isotropic box, isotropic Gaussian
and intensity-driven gradient filters are close to the 8 CPU cores
performances. This is to be expected as for small N it is not possible
to fully load the GPU and properly exploit all the cores. However,
up to 5 x 10° voxels, all filters, when using the GPU, reach the kind
of performance that allows interactive work (maximum execution
time, exploiting the GTX860M, is T, < 0.3 s).

Finally, wavelet lifting is a very fast algorithm: the maximum
execution time (using the Haar wavelet and a value of | = 3),
exploiting one CPU core, for filtering a data cube with up to 10®
voxels is T, < 5.1 s. Therefore, we did not implement a GPU
version. Moreover, the implementation of such parallelization is
rather challenging mainly because of the memory handling on the
GPU. A CUDA implementation was developed by Laan et al. (2011)
giving a speedup of ~10 with respect to their optimized CPU
implementation. This is a large improvement respect to previous
works (e.g. Wong et al., 2007; Tenllado et al., 2008).

Defining n = 4 N Bytes as the RAM usage for a given data cube,
the memory requirements for each of the filter codes are:

(A) CPU implementations of the box, Gaussian and intensity-
driven gradient filters: one permanent n on the RAM for
storing the final results and one temporary 7 for storing partial
run-time results, so a total memory requirement of 2 RAM;

(B) CPU implementation of the wavelet filters: one permanent
on the RAM for storing the final results;

(C) GPU implementation of the box, Gaussian and intensity-driven
gradient filters: one permanent 1 on the RAM, one temporary
n on the RAM and two temporary 1 on the DRAM, so a total
memory requirement of 2 RAM and 27 DRAM.

In summary, a machine with 16 GB of memory can easily
accommodate a ~4 GB dataset when using the box, Gaussian or
intensity-driven gradient filter (in case of the GPU implementation
at least 8 GB of DRAM are needed).

For the GPU implementation, we chose the shader para-
digm (OpenGL), over other computational scientific SDK (CUDA
or OpenCL), for its compatibility with all the GPU vendors.
Moreover, OpenGL is present in any operating system, which
simplifies the distribution of the software. The drawback is that
the computations performed with OpenGL have relatively less
precision. For HI data this is not an issue: the scalar range
of the pixel intensities is relatively small and float precision is

Table 4

The F-values relative to both the CPU and GPU filtering implementation of the filters
applied to WEINO069. The filter index entries are respectively: (1) isotropic box;
(2) anisotropic box; (3) isotropic Gaussian; (4) anisotropic Gaussian; (5) intensity-
driven gradient. The values of the input parameters are defined in Section 6.

Filter Hardware F

1 CPU 1.7534 £ 0.0061
GPU 1.7217 £ 0.0060

2 CPU 1.8591 + 0.0064
GPU 1.8182 £ 0.0063

3 CPU 1.6953 £ 0.0059
GPU 1.5386 £ 0.0054

4 CPU 1.8848 £ 0.0065
GPU 1.7760 =+ 0.0062

5 CPU 2.3416 £ 0.0083
GPU 2.2704 £ 0.0079

sufficient for the calculations required by the algorithms. In fact,
the differences between the CPU and GPU filtered data cubes
are unnoticeable: in Table 4, we compare the GPU methods
smoothing quality to the CPU ones calculating the F-values, and
the differences between the two implementations are less than 5%.

In the next section, we will summarize and discuss the results
presented in the previous sections focusing on their applicability
to visualization.

7. Discussion and conclusions

Future blind surveys of HI will deliver a large variety of data
in terms both of the number of galaxies and additional complex
features such as tails, extra-planar gas and filaments. These
faint structures can be found in nearby medium/high resolved
galaxies (e.g. Model and WEINO69 data cube) and groups of non-
resolved galaxies (e.g. NGC-3379 and NGC4111). They have a very
low signal-to-noise ratio of ~1, but are extended over many
pixels. Efficiently separating such signals from the noise is not
straightforward (visual examples are shown in Sections 2 and 3).
Moreover, in the case of APERTIF and ASKAP, it is estimated that
tens of such sub-cubes will be collected weekly (Duffy et al., 2012).
This is a large volume of data, and a coupling between the filtering
algorithms shown in this paper and 3-D visualization can enhance
the inspection process of large numbers of galaxies and masks
provided by source finder algorithms.

In Section 3, we reviewed state-of-the-art filtering algorithms.
We qualitatively illustrated the filtering results using several
methods. We then performed a visual inspection of the filtering
results, followed by a systematic quantitative analysis of the
algorithms in Section 4.

First, we extensively investigated the parameter space of the
input parameters (i.e. the extension and shape of the kernels)
of the box and Gaussian filters by applying them to several test
data cubes. In Table 1, we indicated the best filtering runs and
their input parameters. As criterion for selecting the best runs
we used the F-value, our smoothing quality control parameter
defined in Sections 4 and 5, requiring F to be large. Thereafter, we
confirmed the selection by visually inspecting the filtered output
data cube. Table 1 highlights, for our sample, that finding the input
parameters of the best runs is not straightforward. In fact, the
box and Gaussian kernels are highly dependent on the spatial and
velocity extents, and the signal-to-noise ratio of the unknown faint
signal. Note that the Gaussian smoothing gives better results than
the box smoothing, because a gentler smoothing preserves better
the shape of the data (the differences are clearly visible in the
second and third panels in Fig. 4). Two examples which suffer from
these limitations are:
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(1) ModelB: very faint signal (signal-to-noise ratio ~ 1) with
limited extent;
(2) NGC 4111: very extended, relatively faint, signal.

In the first case large kernels are necessary to considerably enhance
the very low level signal. Large kernels (e.g. for the box filter N; > 5
and for the Gaussian filter FWHM; > 3) will, however, wash out
the signal because it is not coherent at such large scales. In the
second case, very large kernels (N; = 9 for the box filters and
FWHM; = 7 for the Gaussian filter) provide the best smoothing and
the maximum F-values. Such kernels drastically reduce, however,
the spatial and velocity resolution of the data.

The optimal dimensions of the box and Gaussian kernels
strongly depend on the extent of the signal and the signal-to-
noise ratio. The quite different, best input parameters of ModelA,
ModelB and ModelC, with their different signal-to-noise ratios,
illustrate this clearly. For example, the best runs for modelB use
larger kernels in the y direction compared to the other models. The
optimal kernels for smoothing ModelA and ModelC have, on the
other hand, a very narrow z component. This is expected as a higher
noise level hides the signal and modifies the overall shape of the
signal itself (i.e. the faintest parts will disappear into the noise).

Second, we analyzed wavelet filters in detail. Our investigation
focused on thresholding the data in the wavelet domain. We
performed the filtering operation exploiting a wavelet lifting
algorithm. Two main wavelets have been used: the Haar and
the Le Gall wavelet. Wavelet lifting is a powerful technique,
but unfortunately it generates artifacts undesirable for our
visualization purposes (see Fig. 5). The filtering results give very
high values of the F-parameter as shown in Table 1. The wavelet
thresholding filter, however, requires a thorough investigation
of the main parameters (choice of the basic wavelet, maximum
number of levels for wavelet decomposition, thresholding values
for each decomposition level) for obtaining an optimal denoising
of the data. We consider this a drawback for user-friendly
visualization purposes.

The optimal input parameters reported in Table 1 vary for each
data cube of our sample. The thresholds parameters, t; ,qyelet, have
strong dependences on the choice of the wavelet and the signal-to-
noise ratio of the faint signal. Moreover, the choice of the optimal
wavelet and decomposition level, I, depends on the extent of the
faint structure. For example, the arc-shape structure in the ModelB
is very thin along the velocity direction (few channels). Therefore,
the Haar wavelet and | = 2 are the optimal choice, while the Le
Gall wavelet and a higher decomposition level, | = 3, provide
the optimal filtering results for WEIN069, NGC3379 and NGC4111,
because these data shows a more extended component.

Filtering with a higher order wavelet than Le Gall may give
optimal results without requiring a pre-smoothing step. However,
we showed that the choice of the wavelet is constrained by the
unknown extent of the faint signal. For example, very high-order
wavelets are not optimal for filtering the models.

Using different decomposition levels in each spatial and
velocity dimension (or a tree structure, e.g. Octree; Laboratory
and Meagher, 1980) may also improve the filtering quality.
However, in the case of morphological complex resolved galaxies
this approach is rather difficult. For example, it is necessary to
determine the optimal levels of decomposition for each dimension
and these depend on the signal extent and signal-to-noise ratio as
well. This is analogous to the issue of finding the optimal kernel for
the box and Gaussian filters.

Applying wavelet decomposition and thresholding the approxi-
mation bands, as shown in Section 3.4, is effectively a segmentation
of the data. Though efficient, the disadvantage is that it also elimi-
nates very low signal-to-noise emission if the thresholding param-
eters are not properly tuned to the data. Since our aim is to couple

filtering techniques to visualization, thresholding techniques are
not favored as they limit the interactive visual data exploration.

Third, we implemented a modification of the diffusion filter: the
intensity-driven gradient filter (see 3.3). This smoothing algorithm
has adaptive characteristics which helps in preserving the smaller
scale structure of the signal, thus avoiding the limitations of the box
and Gaussian filters. The parameters of intensity-driven gradient
filter mainly depend on the signal-to-noise ratio of the emission,
which we found to be quite similar for the objects studied here. In
fact, the intensities of the majority of the voxels of the faint signal
are between 1 and 2 rms. For example, in Section 2, we illustrated
3-D visualizations of the output of the intensity-driven gradient
filter with default parameters (K = 1.5, 7 = 0.0325,n = 20 and
Cxy.z = 5) for two very different objects (WEIN069 and NGC3379).
In both cases, the smoothing is successful in bringing out the low
signal-to-noise structures. In fact, in the case of the gradient filter,
the F-values of the best runs, reported in Table 1, do not differ more
than 15% from the runs with default parameters.

The main input parameters (K, T and n) of the best filtering
results for the three models in Table 1 do not vary. The peak
signal-to-noise ratio of ModelC is ~3 times higher than that of
ModelA. Therefore, the dependences of the input parameters of the
intensity-driven gradient respect to the signal-to-noise ratio are
not stiff functions.

We conclude that the intensity-driven gradient is the most
promising filter because it preserves the detailed structure of
the signal with high signal-to-noise ratio (>3) at the highest
resolution, while smoothing only the faint part of the signal (S/N
< 3). Moreover, the input parameters need only minimal tuning
to the signal itself.

On the other hand, this filter applies a diffusion process which has
the following drawbacks:

(a) the flux scale is not conserved and depends on the signal-
to-noise ratio and hence degree of ‘smoothing’ or resulting
resolution;

(b) setting too high values of the parameters n and t can create
unrealistic web structures (negative and positive) between the
peaks of the negative and positive parts of the noise.

The first issue is not a problem for visualization. In fact, the
main purpose of the filtering operation, in this context, is to
find and enhance low-level signals. Quantitative analysis, such as
calculating column densities, intensity weighted mean velocities,
velocity dispersions etc., can always be performed on the original
data cube once the volume that contains all the signal has been
identified. Regarding the second issue: in Fig. 9 we show as
a guideline the dependences of the F-parameter on the input
parameters K, T and n.

Finally, the previous results suggest that intensity-driven
gradient smoothing can be employed for finding HI sources as
well. This technique could be an alternative for the smooth-and-
clip method and has the advantage that the user does not have to
specify the smoothing kernels. The robustness of such a method
should be tested on a larger number of different cases than we have
used here. This is beyond the scope of the present investigation.

In Section 6, we reported the benchmark of our CPU and GPU
implementations of the filtering algorithms investigated in this
paper. The codes are publicly available? and we integrated them
in a module of SlicerAstro,’ a first design of an astronomical

2 https://github.com/Punzo/SlicerAstro/AstroSmoothing.

3 http://wiki.slicer.org/slicerWiki/index.php/Documentation/Nightly/
Extensions/SlicerAstro.
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Fig. 9. The F-values applying to WEINOG9 an intensity-driven gradient filter with
parameters K, r,nand Cy, , = 5.In this 3-D scatter plot, the F-values are displayed
as a 4th dimension using a color scale. The red dots represents filtering with an high
value of the parameter F (F-values > 1.75).The F-parameter shows low values(<1)
for high values of nand 7 (n > 15and r > 0.0475). For more information regarding
the F-parameter refer to Sections 4 and 5. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

extension of 3DSlicer* (Fedorov et al., 2012). We showed that
for data cubes with a number of voxels up to 5 x 10°, GPU
implementations of the smoothing filters can reach interactive
performance (maximum execution time, T, < 0.3 s) exploiting a
GTX860M, i.e. a GPU suitable for gaming, found on laptops with
mid-level performance. For data cubes up to 10® voxels, the filters
can still reach relatively fast performance (maximum execution
time with a GTX860M, T, < 3.5 s).

In conclusion, the GPU implementation of the intensity-driven
gradient filter satisfies our filtering and visualization requirements
best. The filter provides interactive performance, requires minimal
tuning of the input parameters, and efficiently enhances faint
structures in our data sample without degrading the resolution of
the high signal-to-noise data.
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