The detailed distribution and kinematics of the atomic and the CO-bright
molecular hydrogen in the disc of the Milky Way inside the Solar circle are
derived under the assumptions of axisymmetry and pure circular motions. We
divide the Galactic disc into a series of rings, and assume that the gas in
each ring is described by four parameters: its rotation velocity, velocity
dispersion, midplane density and its scale height. We fit these parameters to
the Galactic HI and CO (J=1-0) data by producing artificial HI and CO
line-profiles and comparing them with the observations. Our approach allows us
to fit all parameters to the data simultaneously without assuming a-priori a
radial profile for one of the parameters. We present the distribution and
kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI)
regions of the Galaxy. Our best-fit models reproduces remarkably well the
observed HI and CO longitude-velocity diagrams up to a few degrees of distance
from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show
very similar kinematics. The rotation curves traced by the HI and H2 follow
closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface
densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown
by some nearby barred galaxies, b) local overdensities that can be interpreted
in terms of spiral arms or ring-like features in the disk. The HI (H2)
properties are fairly constant in the region outside the depression, with
typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of
0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc.
We also show that the HI opacity in the LAB data can be accounted for by using
an `effective' spin temperature of about 150 K: assuming an optically thin
regime leads to underestimate the HI mass by about 30%.Comment: 23 pages, 24 figures. Accepted by A&