15 research outputs found

    An Endolithic Microbial Community in Dolomite Rock in Central Switzerland: Characterization by Reflection Spectroscopy, Pigment Analyses, Scanning Electron Microscopy, and Laser Scanning Microscopy

    Get PDF
    A community of endolithic microorganisms dominated by phototrophs was found as a distinct band a few millimeters below the surface of bare exposed dolomite rocks in the Piora Valley in the Alps. Using in situ reflectance spectroscopy, we detected chlorophyll a (Chl a), phycobilins, carotenoids, and an unknown type of bacteriochlorophyll-like pigment absorbing in vivo at about 720nm. In cross sections, the data indicated a defined distribution of different groups of organisms perpendicular to the rock surface. High-performance liquid chromatography analyses of pigments extracted with organic solvents confirmed the presence of two types of bacteriochlorophylls besides chlorophylls and various carotenoids. Spherical organisms of varying sizes and small filaments were observed in situ with scanning electron microscopy and confocal laser scanning microscopy (one- and two-photon technique). The latter allowed visualization of the distribution of phototrophic microorganisms by the autofluorescence of their pigments within the rock. Coccoid cyanobacteria of various sizes predominated over filamentous ones. Application of fluorescence-labeled lectins demonstrated that most cyanobacteria were embedded in an exopolymeric matrix. Nucleic acid stains revealed a wide distribution of small heterotrophs. Some biological structures emitting a green autofluorescence remain to be identifie

    Bacterial Community Shifts of a High Mountain Lake in Response to Variable Simulated Conditions: Availability of Nutrients, Light and Oxygen

    Full text link
    We studied bacterial population composition shifts by exposing natural water samples to variable simulated environmental conditions. The samples were taken from Lake Jori XIII (2640 m a.s.l), an oligo-to mesotrophic cold freshwater lake, located in the eastern Swiss Alps. The Jori lakes are characterized as remote, unpolluted high mountain lakes with a long period of ice cover and typically low nutrient concentrations. Culture independent techniques (PCR-based analyses) were used for detection and molecular characterization of a large number of bacteria most of which are still uncultivable. Bacterial community shifts over three ecological conditions (nutrients, light and oxygen availability) were detected by using Temporal Temperature gradient Gel Electrophoresis (TTGE) of a PCR-amplified part of the 16S rRNA gene. The bacterial populations responded differently to the variable conditions, as revealed by TTGE pattern shifts during the experiment

    Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada

    Get PDF
    Background: Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability.Methodology/Principal Findings: Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring), employing the well-known molecular strategy of DGGE analyses. Before the bio-consolidation treatment, the bacterial diversity showed the exclusive dominance of Actinobacteria (100%), which decreased in the community (44.2%) after 5 months, and Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) appeared. After 12 months, Gamma-proteobacteria vanished from the community and Cyanobacteria (22.1%) appeared and remained dominant after thirty months, when the microbiota consisted of Actinobacteria (42.2%) and Cyanobacteria (57.8%) only. Fungal diversity showed that the Ascomycota phylum was dominant before treatment (100%), while, after five months, Basidiomycota (6.38%) appeared on the stone, and vanished again after twelve months. Thirty months after the treatment, the fungal population started to stabilize and Ascomycota dominated on the stone (83.33%) once again. Members of green algae (Chlorophyta, Viridiplantae) appeared on the stone at 5, 12 and 30 months after the treatment and accounted for 4.25%, 84.77% and 16.77%, respectively.Conclusions: The results clearly show that, although a temporary shift in the bacterial and fungal diversity was observed during the first five months, most probably promoted by the application of the bio-consolidation treatment, the microbiota tends to regain its initial stability in a few months. Thus, the treatment does not seem to have any negative side effects on the stone-autochthonous microbiota over that time. The molecular strategy employed here is suggested as an efficient monitoring tool to assess the impact on the stone-autochthonous microbiota of the application of biomineralization processes as a restoration/conservation procedure.This work was supported by the European Regional Development Fund (ERDF), Junta de Andalucía (Spain) and the “Fortalecimiento de la I+D+i” program from the University of Granada, co-financed by grant RNM-3493 and Research Group BIO-103 from Junta de Andalucía, as well as by the Spanish Government through “José Castillejo” program from the “Ministerio de Educación, Cultura y Deporte” (I+D+i 2008-2011), and by the Austrian Science Fund (FWF) under Grant “Elise-Richter V194-B20”

    Molecular characterization of an endolithic microbial community in dolomite rock in the central alps (Switzerland)

    Full text link
    Endolithic microorganisms colonize the pores in exposed dolomite rocks in the Piora Valley in the Swiss Alps. They appear as distinct grayish-green bands about 1–8 mm below the rock surface. Based on environmental small subunit ribosomal RNA gene sequences, a diverse community driven by photosynthesis has been found. Cyanobacteria (57 clones), especially the genus Leptolyngbya, form the functional basis for an endolithic community which contains a wide spectrum of so far not characterized species of chemotrophic Bacteria (64 clones) with mainly Actinobacteria, Alpha-Proteobacteria, Bacteroidetes, and Acidobacteria, as well as a cluster within the Chloroflexaceae. Furthermore, a cluster within the Crenarchaeotes (40 clones) has been detected. Although the eukaryotic diversity was outside the scope of the study, an amoeba (39 clones), and several green algae (51 clones) have been observed. We conclude that the bacterial diversity in this endolithic habitat, especially of chemotrophic, nonpigmented organisms, is considerable and that Archaea are present as well

    Virtual family-centered hospital rounds in the neonatal intensive care unit: protocol for a cluster randomized controlled trial

    No full text
    Abstract Background Family-centered rounds is recognized as a best practice for hospitalized children, but it has only been possible for children whose families can physically be at the bedside during hospital rounds. The use of telehealth to bring a family member virtually to the child’s bedside during hospital rounds is a promising solution. We aim to evaluate the impact of virtual family-centered hospital rounds in the neonatal intensive care unit on parental and neonatal outcomes. Methods This two-arm cluster randomized controlled trial will randomize families of hospitalized infants to have the option to use telehealth for virtual hospital rounds (intervention) or usual care (control). The intervention-arm families will also have the option to participate in hospital rounds in-person or to not participate in hospital rounds. All eligible infants who are admitted to this single-site neonatal intensive care unit during the study period will be included. Eligibility requires that there be an English-proficient adult parent or guardian. We will measure participant-level outcome data to test the impact on family-centered rounds attendance, parent experience, family-centered care, parent activation, parent health-related quality of life, length of stay, breastmilk feeding, and neonatal growth. Additionally, we will conduct a mixed methods implementation evaluation using the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) framework. Discussion The findings from this trial will increase our understanding about virtual family-centered hospital rounds in the neonatal intensive care unit. The mixed methods implementation evaluation will enhance our understanding about the contextual factors that influence the implementation and rigorous evaluation of our intervention. Trial registration ClinicalTrials.gov Identifier: NCT05762835. Status: Not yet recruiting. First posted: March 10, 2023; last update posted: March 10, 2023

    Global Biogeography and Quantitative Seasonal Dynamics of Gemmatimonadetes in Soil â–ż

    No full text
    Bacteria belonging to phylum Gemmatimonadetes comprise approximately 2% of soil bacterial communities. However, little is known of their ecology due to a lack of cultured representation. Here we present evidence from biogeographical analyses and seasonal quantification of Gemmatimonadetes in soils, which suggests an adaptation to low soil moisture
    corecore