35 research outputs found

    New Insights into Alzheimer's Disease Progression: A Combined TMS and Structural MRI Study

    Get PDF
    BACKGROUND: Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas. METHODOLOGY AND PRINCIPAL FINDINGS: To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness. CONCLUSIONS: In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD

    Transcranial Magnetic Stimulation Intensities in Cognitive Paradigms

    Get PDF
    BACKGROUND: Transcranial magnetic stimulation (TMS) has become an important experimental tool for exploring the brain's functional anatomy. As TMS interferes with neural activity, the hypothetical function of the stimulated area can thus be tested. One unresolved methodological issue in TMS experiments is the question of how to adequately calibrate stimulation intensities. The motor threshold (MT) is often taken as a reference for individually adapted stimulation intensities in TMS experiments, even if they do not involve the motor system. The aim of the present study was to evaluate whether it is reasonable to adjust stimulation intensities in each subject to the individual MT if prefrontal regions are stimulated prior to the performance of a cognitive paradigm. METHODS AND FINDINGS: Repetitive TMS (rTMS) was applied prior to a working memory task, either at the 'fixed' intensity of 40% maximum stimulator output (MSO), or individually adapted at 90% of the subject's MT. Stimulation was applied to a target region in the left posterior middle frontal gyrus (pMFG), as indicated by a functional magnetic resonance imaging (fMRI) localizer acquired beforehand, or to a control site (vertex). Results show that MT predicted the effect size after stimulating subjects with the fixed intensity (i.e., subjects with a low MT showed a greater behavioral effect). Nevertheless, the individual adaptation of intensities did not lead to stable effects. CONCLUSION: Therefore, we suggest assessing MT and account for it as a measure for general cortical TMS susceptibility, even if TMS is applied outside the motor domain

    The predictive ability of Bromilow's time-cost model

    Get PDF
    Bromilow's log-log time-cost (BTC) model is tested and refitted with a new set of data for Australian construction projects completed between 1991 and 1998. It is shown that, as anticipated by earlier research, different parameter estimates are needed for different project types, with smaller industrial projects taking less time to complete than the smaller educational and residential projects. This results in the development of two separate models, one for industrial projects and one for non-industrial projects. No changes in parameter estimates are needed for projects with different client sectors, contractor selection methods and contractual arrangements. Alternatives to the log-log model failed to produce any improved fit. Finally, the results are compared with previous work to indicate the extent of changes in time-cost relationships in Australian construction projects over the last 40 years. This indicates a clear improvement in construction speed over the period. Furthermore, the 'public' sector group in particular has exhibited a greater variation (up to 132%) over the years.Cost Time Duration Time-COST Bromilow Model Linear Regression Speed Productivity,
    corecore