298 research outputs found

    Copy number variant detection in inbred strains from short read sequence data

    Get PDF
    Summary: We have developed an algorithm to detect copy number variants (CNVs) in homozygous organisms, such as inbred laboratory strains of mice, from short read sequence data. Our novel approach exploits the fact that inbred mice are homozygous at virtually every position in the genome to detect CNVs using a hidden Markov model (HMM). This HMM uses both the density of sequence reads mapped to the genome, and the rate of apparent heterozygous single nucleotide polymorphisms, to determine genomic copy number. We tested our algorithm on short read sequence data generated from re-sequencing chromosome 17 of the mouse strains A/J and CAST/EiJ with the Illumina platform. In total, we identified 118 copy number variants (43 for A/J and 75 for CAST/EiJ). We investigated the performance of our algorithm through comparison to CNVs previously identified by array-comparative genomic hybridization (array CGH). We performed quantitative-PCR validation on a subset of the calls that differed from the array CGH data sets

    Surfing of bacterial droplets: Bacillus subtilis

    Full text link

    Staphylococcus aureus forms spreading dendrites that have characteristics of active motility

    Get PDF
    Staphylococcus aureus is historically regarded as a non-motile organism. More recently it has been shown that S. aureus can passively move across agar surfaces in a process called spreading. We re-analysed spreading motility using a modified assay and fo- cused on observing the formation of dendrites: branching structures that emerge from the central colony. We discovered that S. aureus can spread across the surface of media in struc- tures that we term ‘comets’, which advance outwards and precede the formation of dendrites. We observed comets in a diverse selection of S. aureus isolates and they exhibit the following behaviours: (1) They consist of phenotypically distinct cores of cells that move forward and seed other S. aureus cells behind them forming a comet ‘tail’; (2) they move when other cells in the comet tail have stopped moving; (3) the comet core is held together by a matrix of slime; and (4) the comets etch trails in the agar as they move forwards. Comets are not con- sistent with spreading motility or other forms of passive motility. Comet behaviour does share many similarities with a form of active motility known as gliding. Our observations therefore suggest that S. aureus is actively motile under certain conditions

    Calibration of centre-of-mass energies at LEP1 for precise measurements of Z properties

    Get PDF
    The determination of the centre-of-mass energies from the LEP1 data for 1993, 1994 and 1995 is presented. Accurate knowledge of these energies is crucial in the measurement of the Z resonance param eters. The improved understanding of the LEP energy behaviour accumulated during the 1995 energy scan is detailed, while the 1993 and 1994 measurements are revised. For 1993 these supersede the pr eviously published values. Additional instrumentation has allowed the detection of an unexpectedly large energy rise during physics fills. This new effect is accommodated in the modelling of the beam-energy in 1995 and propagated to the 1993 and 1994 energies. New results are reported on the magnet temperature behaviour which constitutes one of the major corrections to the average LEP ene rgy. The 1995 energy scan took place in conditions very different from the previous years. In particular the interaction-point specific corrections to the centre-of-mass energy in 1995 are more complicated than previously: these arise from the modified radiofrequency-system configuration and from opposite-sign vertical dispersion induced by the bunch-train mode of LEP operation. Finall y an improved evaluation of the LEP centre-of-mass energy spread is presented. This significantly improves the precision on the Z width

    The energy calibration of LEP in the 1993 scan

    Get PDF
    This report summarizes the procedure for providing the absolute energy calibration of the LEP beams during the energy scan in 1993. The average beam energy around the LEP ring was measured in 25 calibrations with the resonant depolarization technique. The time variation of this average beam energy is well described by a model of the accelerator based on monitored quantities. The absolute calibration of the centre of mass energies of the off-peak points is determined with a precision of 2 parts in 10(5) resulting in a systematic error on the Z-mass of about 1.4 MeV and on the Z-width of about 1.5 MeV

    Evolution of the capsular gene locus of Streptococcus pneumoniae serogroup 6

    Get PDF
    Streptococcus pneumoniae expressing serogroup 6 capsules frequently causes pneumococcal infections and the evolutionary origins of the serogroup 6 strains have been extensively studied. However, these studies were performed when serogroup 6 had only two known members (serotypes 6A and 6B) and before the two new members (serotypes 6C and 6D) expressing wciNβ were found. We have therefore reinvestigated the evolutionary origins of serogroup 6 by examining the profiles of the capsule gene loci and the multilocus sequence types (MLSTs) of many serogroup 6 isolates from several continents. We confirmed that there are two classes of cps locus sequences for serogroup 6 isolates. In our study, class 2 cps sequences were limited to a few serotype 6B isolates. Neighbour-joining analysis of cps sequence profiles showed a distinct clade for 6C and moderately distinct clades for class 1 6A and 6B sequences. The serotype 6D cps profile was found within the class 1 6B clade, suggesting that it was created by recombination between 6C and 6B cps loci. Interestingly, all 6C isolates also had a unique wzy allele with a 6 bp deletion. This suggests that serotype switching to 6C involves the transfer of a large (>4 kb) gene segment that includes both the wciNβ allele and the ‘short’ wzy allele. The MLST studies of serotype 6C isolates suggest that the 6C cps locus is incorporated into many different pneumococcal genomic backgrounds but that, interestingly, 6C cps may have preferentially entered strains of the same genomic backgrounds as those of serotype 6A

    A Large Expansion of the HSFY Gene Family in Cattle Shows Dispersion across Yq and Testis-Specific Expression

    Get PDF
    Heat shock transcription factor, Y-linked (HSFY) is a member of the heat shock transcriptional factor (HSF) family that is found in multiple copies on the Y chromosome and conserved in a number of species. Its function still remains unknown but in humans it is thought to play a role in spermatogenesis. Through real time polymerase chain reaction (PCR) analyses we determined that the HSFY family is largely expanded in cattle (∼70 copies) compared with human (2 functional copies, 4 HSFY-similar copies). Unexpectedly, we found that it does not vary among individual bulls as a copy number variant (CNV). Using fluorescence in situ hybridization (FISH) we found that the copies are dispersed along the long arm of the Y chromosome (Yq). HSFY expression in cattle appears restricted to the testis and its mRNA correlates positively with mRNA markers of spermatogonial and spermatocyte cells (UCHL1 and TRPC2, respectively) which suggests that HSFY is expressed (at least in part) in early germ cells

    Social Motility in African Trypanosomes

    Get PDF
    African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions

    Surface Hardness Impairment of Quorum Sensing and Swarming for Pseudomonas aeruginosa

    Get PDF
    The importance of rhamnolipid to swarming of the bacterium Pseudomonas aeruginosa is well established. It is frequently, but not exclusively, observed that P. aeruginosa swarms in tendril patterns—formation of these tendrils requires rhamnolipid. We were interested to explain the impact of surface changes on P. aeruginosa swarm tendril development. Here we report that P. aeruginosa quorum sensing and rhamnolipid production is impaired when growing on harder semi-solid surfaces. P. aeruginosa wild-type swarms showed huge variation in tendril formation with small deviations to the “standard” swarm agar concentration of 0.5%. These macroscopic differences correlated with microscopic investigation of cells close to the advancing swarm edge using fluorescent gene reporters. Tendril swarms showed significant rhlA-gfp reporter expression right up to the advancing edge of swarming cells while swarms without tendrils (grown on harder agar) showed no rhlA-gfp reporter expression near the advancing edge. This difference in rhamnolipid gene expression can be explained by the necessity of quorum sensing for rhamnolipid production. We provide evidence that harder surfaces seem to limit induction of quorum sensing genes near the advancing swarm edge and these localized effects were sufficient to explain the lack of tendril formation on hard agar. We were unable to artificially stimulate rhamnolipid tendril formation with added acyl-homoserine lactone signals or increasing the carbon nutrients. This suggests that quorum sensing on surfaces is controlled in a manner that is not solely population dependent
    corecore