33 research outputs found

    Interatomic Coulombic Decay following Photoionization of the Helium Dimer: Observation of Vibrational Structure

    Get PDF
    Using synchrotron radiation we simultaneously ionize and excite one helium atom of a helium dimer (He_2) in a shakeup process. The populated states of the dimer ion (i.e. He^[*+](n = 2; 3)-He) are found to deexcite via interatomic coulombic decay. This leads to the emission of a second electron from the neutral site and a subsequent coulomb explosion. In this letter we present a measurement of the momenta of fragments that are created during this reaction. The electron energy distribution and the kinetic energy release of the two He^+ ions show pronounced oscillations which we attribute to the structure of the vibrational wave function of the dimer ion.Comment: 8 pages, 5 figure

    Single photon double ionization of the helium dimer

    Full text link
    We show that a single photon can ionize the two helium atoms of the helium dimer in a distance up to 10 {\deg}A. The energy sharing among the electrons, the angular distributions of the ions and electrons as well as comparison with electron impact data for helium atoms suggest a knock-off type double ionization process. The Coulomb explosion imaging of He_2 provides a direct view of the nuclear wave function of this by far most extended and most diffuse of all naturally existing molecules.Comment: 10 pages, 5 figure

    A comprehensive study of Interatomic Coulombic Decay in argon dimers: Extracting R-dependent absolute decay rates from the experiment

    Full text link
    In this work we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model

    Two-photon double ionization of He and Ne with intense VUV free-electron-laser pulses

    No full text
    Two-photon double ionization of He and Ne by intense (1013–1014 W/cm2) short pulsed (~ 25 fs) 44 eV radiation delivered by the free-electron LASer at Hamburg (FLASH) has been studied using a "Reaction Microscope". We observe characteristic signatures of direct (for He) and sequential (for Ne) ionization imprinted in different momentum distributions of the doubly charged ions. For Ne we also present kinematically complete data, extracting state-selective angular asymmetry parameters and an angular correlation function of both electrons, and compare them with recent theoretical predictions
    corecore