1,705 research outputs found
Air fluorescence detection of large air showers below the horizon
In the interest of exploring the cosmic ray spectrum at energies greater than 10 to the 18th power eV, where flux rates at the Earth's surface drop below 100 yr(-1) km(-2) sr(-1), cosmic ray physicists have been forced to construct ever larger detectors in order to collect useful amounts of data in reasonable lengths of time. At present, the ultimate example of this trend is the Fly's Eye system in Utah, which uses the atmosphere around an array of skyward-looking photomultiplier tubes. The air acts as a scintillator to give detecting areas as large as 5000 square kilometers sr (for highest energy events). This experiment has revealed structure (and a possible cutoff) in the ultra-high energy region above 10 o the 19th power eV. The success of the Fly's Eye experiment provides impetus for continuing the development of larger detectors to make accessible even higher energies. However, due to the rapidly falling flux, a tenfold increase in observable energy would call for a hundredfold increase in the detecting area. But, the cost of expanding the Fly's Eye detecting area will approximately scale linearly with area. It is for these reasons that the authors have proposed a new approach to using the atmosphere as a scintillator; one which will require fewer photomultipliers, less hardware (thus being less extensive), yet will provide position and shower size information
Commuting families in Hecke and Temperley-Lieb algebras
Abstract
We define analogs of the Jucys-Murphy elements for the affine Temperley-Lieb algebra and give their explicit expansion in terms of the basis of planar Brauer diagrams. These Jucys-Murphy elements are a family of commuting elements in the affine Temperley-Lieb algebra, and we compute their eigenvalues on the generic irreducible representations. We show that they come from Jucys-Murphy elements in the affine Hecke algebra of type A, which in turn come from the Casimir element of the quantum group . We also give the explicit specializations of these results to the finite Temperley-Lieb algebra.12
Commentary: The Relationship of Antitrust Policy and Technological Progress
It is the purpose of this Commentary to explore, in a preliminary fashion, the relationship of antitrust policy and technological innovation and to suggest circumstances under which the antitrust laws may lend themselves to the enhancement of opportunities for technological change and progress
DASI Three-Year Cosmic Microwave Background Polarization Results
We present the analysis of the complete 3-year data set obtained with the
Degree Angular Scale Interferometer (DASI) polarization experiment, operating
from the Amundsen-Scott South Pole research station. Additional data obtained
at the end of the 2002 Austral winter and throughout the 2003 season were added
to the data from which the first detection of polarization of the cosmic
microwave background radiation was reported. The analysis of the combined data
supports, with increased statistical power, all of the conclusions drawn from
the initial data set. In particular, the detection of E-mode polarization is
increased to 6.3 sigma confidence level, TE cross-polarization is detected at
2.9 sigma, and B-mode polarization is consistent with zero, with an upper limit
well below the level of the detected E-mode polarization. The results are in
excellent agreement with the predictions of the cosmological model that has
emerged from CMB temperature measurements. The analysis also demonstrates that
contamination of the data by known sources of foreground emission is
insignificant.Comment: 13 pages Latex, 10 figures, submitted to Ap
Recommended from our members
Microwave Treatment as a Pesticide Alternative for Stored-Products
This CRADA was a continuation of earlier work with Micro-Grain, Inc. to develop power, high frequency microwave treatment process to treat insect infested grain. ORNLs role was as a subcontractor to Micro-Grain's Phase II SBIR project funded by the US Department of Agriculture. The primary objective was to develop a commercial scale prototype unit capable of treating infested grain at flow rates approaching 1 kg/sec, which is required to be viable in the grain handling industry. A flow rate of {approx} 0.12 Kg/second was demonstrated at 20 kW microwave power level with 100% kill rate. The system is capable of 200 kW however waveguide arcing due to grain dust in the waveguide limited the power to 20 kW during the tests. Development tasks performed during the project included modification of an existing high-power microwave exposure facility to uniformly process large grain samples at high flow rates and improved instrumentation to detect grain flow and uniformity. Microwave processing tasks include a series of controlled exposure tests using infested grain samples provided and analyzed by the University of Oklahoma. Grain samples were infested with red flour beetles which proved the most difficult to kill in earlier tests. Most of the samples processed resulted in quite successful kill rates and a maximum grain temperature of 46 C. The facilities utilized at ORNL are located in the Fusion Energy building (9201-2 at Y-12) and include the 28 GHz 200 kW CW high power microwave facility and microwave test equipment associated with the FED Microwave Development Laboratory in 9201-2. An improved microwave exposure chamber and grain flow control and handling equipment were designed and build as a joint effort between Micro-Grain and ORNL. A number of insect infested grain tests were successfully performed although the higher power, higher flow rates were limited by arcing in the microwave waveguide and damage to the gyrotron output window. Test results and the overall performance of the applicator system are very favorable for continued development of the concept. Further tests were performed in a large high power 2.45 GHz microwave applicator in batches. These samples were also quite effectively treated which supports the concept that a lower cost, lower frequency microwave system might be more successful due to the improved economics and simpler operation and maintenance of the low frequency system. Follow-on work is still possible however the untimely death of Steve Halverson, founder of Micro-grain, has essentially brought the development work to a close for now. Micro-Grain is being run by relatives at a low level who are not actively pursuing further funding
Archeops: an instrument for present and future cosmology
Archeops is a balloon-borne instrument dedicated to measure the cosmic
microwave background (CMB) temperature anisotropies. It has, in the millimetre
domain (from 143 to 545 GHz), a high angular resolution (about 10 arcminutes)
in order to constrain high l multipoles, as well as a large sky coverage
fraction (30%) in order to minimize the cosmic variance. It has linked, before
WMAP, Cobe large angular scales to the first acoustic peak region. From its
results, inflation motivated cosmologies are reinforced with a flat Universe
(Omega_tot=1 within 3%). The dark energy density and the baryonic density are
in very good agreement with other independent estimations based on supernovae
measurements and big bang nucleosynthesis. Important results on galactic dust
emission polarization and their implications for Planck are also addressed.Comment: 4 pages, 2 figures, to appear in Proceedings of the Multiwavelength
Cosmology Conference, June 2003, Mykonos Island, Greec
The Habitable-Zone Planet Finder: A Stabilized Fiber-Fed NIR Spectrograph for the Hobby-Eberly Telescope
We present the scientific motivation and conceptual design for the recently
funded Habitable-zone Planet Finder (HPF), a stabilized fiber-fed near-infrared
(NIR) spectrograph for the 10 meter class Hobby-Eberly Telescope (HET) that
will be capable of discovering low mass planets around M dwarfs. The HPF will
cover the NIR Y & J bands to enable precise radial velocities to be obtained on
mid M dwarfs, and enable the detection of low mass planets around these stars.
The conceptual design is comprised of a cryostat cooled to 200K, a dual
fiber-feed with a science and calibration fiber, a gold coated mosaic echelle
grating, and a Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7m cutoff.
A uranium-neon hollow-cathode lamp is the baseline wavelength calibration
source, and we are actively testing laser frequency combs to enable even higher
radial velocity precision. We will present the overall instrument system design
and integration with the HET, and discuss major system challenges, key choices,
and ongoing research and development projects to mitigate risk. We also discuss
the ongoing process of target selection for the HPF survey.Comment: 14 pages, 9 figures. To appear in the proceedings of the SPIE 2012
Astronomical Instrumentation and Telescopes conferenc
- …