6,886 research outputs found
Composite vertices that lead to soft form factors
The momentum-space cut-off parameter of hadronic vertex functions
is studied in this paper. We use a composite model where we can measure the
contributions of intermediate particle propagations to . We show that
in many cases a composite vertex function has a much smaller cut-off than its
constituent vertices, particularly when light constituents such as pions are
present in the intermediate state. This suggests that composite
meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda
considerably less than 1 GeV. We discuss the origin of this softening of form
factors as well as the implications of our findings on the modeling of nuclear
reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request
The Role of in Two-pion Exchange Three-nucleon Potential
In this paper we have studied the two-pion exchange three-nucleon potential
using an approximate chiral symmetry of the
strong interaction. The off-shell pion-nucleon scattering amplitudes obtained
from the Weinberg Lagangian are supplemented with contributions from the
well-known -term and the exchange. It is the role of the
-resonance in , which we have investigated in detail in the
framework of the Lagrangian field theory. The -contribution is quite
appreciable and, more significantly, it is dependent on a parameter Z which is
arbitrary but has the empirical bounds . We find that the
-contribution to the important parameters of the depends
on the choice of a value for Z, although the correction to the binding energy
of triton is not expected to be very sensitive to the variation of Z within its
bounds.Comment: 14 pages, LaTe
Emotional Intelligence and Personal Development in Employees: a Case Study of Zigron Corporation, Pakistan
Article sought to explore the potential role of Emotional Intelligence (EI) in the personal development of organizational employees and to find out the scope of emotional intelligence for personal development of individuals. This study was qualitative in nature; however, to ensure the authenticity and generalizability of the results some quantitative analysis analyses were applied. Using case study method and taking interviews from 17 software house engineers of Zigron Corporation in Pakistan, this study suggests that emotional intelligence plays a crucial role in the personal development of individuals
eta-^4He Bound States in the Skyrme Model
The rational map ansatz for light nuclei in the Skyrme model is shown to
imply the existence of an \eta-^4He bound state, with a binding energy of ~ 30
KeV.Comment: 5 page
Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation
The use of naturally occurring ores as oxygen carriers in CLC processes is attractive because of their relative abundance and low cost. Unfortunately, they typically exhibit lower reactivity and lack the mechanical robustness required, when compared to synthetically produced carriers. Impregnation is a suitable method for enhancing both the reactivity and durability of natural ores when used as oxygen carriers for CLC systems. This investigation uses impregnation to improve the chemical and mechanical properties of a Brazilian manganese ore and a Canadian iron ore. The manganese ore was impregnated with Fe2O3 and the iron ore was impregnated with Mn2O3 with the goal of forming a combined Fe/Mn oxygen carrier. The impregnated ore’s physical characteristics were assessed by SEM, BET and XRD analysis. Measurements of the attrition resistance and crushing strength were used to investigate the mechanical robustness of the oxygen carriers. The impregnated ore’s mechanical and physical properties were clearly enhanced by the impregnation method, with boosts in crushing strength of 11–26% and attrition resistance of 37–31% for the impregnated iron and manganese ores, respectively. Both the unmodified and impregnated ore’s reactivity, for the conversion of gaseous fuel (CH4 and syngas) and gaseous oxygen release (CLOU potential) were investigated using a bench-scale quartz fluidised-bed reactor. The impregnated iron ore exhibited a greater degree of syngas conversion compared to the other samples examined. Iron ore based oxygen carrier’s syngas conversion increases with the number of oxidation and reduction cycles performed. The impregnated iron ore exhibited gaseous oxygen release over extended periods in an inert atmosphere and remained at a constant 0.2% O2 concentration by volume at the end of this inert period. This oxygen release would help ensure the efficient use of solid fuels. The impregnated iron ore’s reactivity for CH4 conversion was similar to the reactivity of its unmodified counterpart. The unmodified manganese ore converted CH4 to the greatest extent of all the samples tested here, while the impregnated manganese ore exhibited a decrease in reactivity with respect to syngas and CH4 conversion.EPSR
Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition
Cataloged from PDF version of article.Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 degrees C onto electrospun polymeric nanofibers, (iii) calcination at 500 degrees C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 degrees C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License
PIV study of the effect of piston position on the in-cylinder swirling flow during the scavenging process in large two-stroke marine diesel engines
A simplified model of a low speed large two-stroke marine diesel engine cylinder is developed. The effect of piston position on the in-cylinder swirling flow during the scavenging process is studied using the stereoscopic particle image velocimetry technique. The measurements are conducted at different cross-sectional planes along the cylinder length and at piston positions covering the air intake port by 0, 25, 50 and 75%. When the intake port is fully open, the tangential velocity profile is similar to a Burgers vortex, whereas the axial velocity has a wake-like profile. Due to internal wall friction, the swirl decays downstream, and the size of the vortex core increases. For increasing port closures, the tangential velocity profile changes from a Burgers vortex to a forced vortex, and the axial velocity changes correspondingly from a wake-like profile to a jet-like profile. For piston position with 75% intake port closure, the jet-like axial velocity profile at a cross-sectional plane close to the intake port changes back to a wake-like profile at the adjacent downstream cross-sectional plane. This is characteristic of a vortex breakdown. The non-dimensional velocity profiles show no significant variation with the variation in Reynolds numbe
Asymptotic symmetry and conservation laws in 2d Poincar\'e gauge theory of gravity
The structure of the asymptotic symmetry in the Poincar\'e gauge theory of
gravity in 2d is clarified by using the Hamiltonian formalism. The improved
form of the generator of the asymptotic symmetry is found for very general
asymptotic behaviour of phase space variables, and the related conserved
quantities are explicitly constructed.Comment: 22 pages, Plain Te
Universal conservation law and modified Noether symmetry in 2d models of gravity with matter
It is well-known that all 2d models of gravity---including theories with
nonvanishing torsion and dilaton theories---can be solved exactly, if matter
interactions are absent. An absolutely (in space and time) conserved quantity
determines the global classification of all (classical) solutions. For the
special case of spherically reduced Einstein gravity it coincides with the mass
in the Schwarzschild solution. The corresponding Noether symmetry has been
derived previously by P. Widerin and one of the authors (W.K.) for a specific
2d model with nonvanishing torsion. In the present paper this is generalized to
all covariant 2d theories, including interactions with matter. The related
Noether-like symmetry differs from the usual one. The parameters for the
symmetry transformation of the geometric part and those of the matterfields are
distinct. The total conservation law (a zero-form current) results from a two
stage argument which also involves a consistency condition expressed by the
conservation of a one-form matter ``current''. The black hole is treated as a
special case.Comment: 3
- …
