1,428 research outputs found

    Early ComeOn+ Adaptive Optics Observation of GQ Lup and its Substellar Companion

    Full text link
    An analysis of adaptive optics K-band imaging data of GQ Lup acquired in 1994 by the first generation adaptive optics system ComeOn+ at the ESO 3.6m optical telescope in La Silla is presented. The data reveal a likely candidate for the low-mass companion recently reported in the literature. An a posteriori detection in the 11 year old data would provide a useful astrometric data point for the very long period (~1000 yr) orbit of the GQ Lup system. However, the data is severely contaminated by speckle noise at the given projected separation, which decreases the confidence of the detection. Still, from the data we can conclude that GQ Lup B is not an unrelated background source, but instead a physical companion to GQ Lup A. We present here the reduction and analysis of the ComeOn+ images, as well as the results. We also discuss the nature of the companion based on data and models available in the scientific literature and examine claims made regarding the classification of the object as a planet.Comment: 8 pages, 4 figures, accepted for publication in A&

    Creation and restoration of coastal and estuarine habitats, a review of practical examples and a description of sequential guidelines for habitat creation and restoration in port areas

    Get PDF
    One of the themes of the NEW! Delta project is theme 3 "Creation and restoration of coastal and estuarine habitats" Within this theme two demonstration projects of habitat creation and restoration schemes have been implemented: one in the port of Antwerp and the other in the dune area "De Zilk" along the Dutch coast. The contributers of this study are from: ABP MER (United Kingdom), Alterra, Vlaamse overheid Afdeling Kust, DIREN Haute-Normandie, Grontmij, IMIEU Brussel, Haven van Antwerpen, Haven van Rotterdam, provincie Zuid-Hollan

    Perspectives for a mixed two-qubit system with binomial quantum states

    Full text link
    The problem of the relationship between entanglement and two-qubit systems in which it is embedded is central to the quantum information theory. This paper suggests that the concurrence hierarchy as an entanglement measure provides an alternative view of how to think about this problem. We consider mixed states of two qubits and obtain an exact solution of the time-dependent master equation that describes the evolution of two two-level qubits (or atoms) within a perfect cavity for the case of multiphoton transition. We consider the situation for which the field may start from a binomial state. Employing this solution, the significant features of the entanglement when a second qubit is weakly coupled to the field and becomes entangled with the first qubit, is investigated. We also describe the response of the atomic system as it varies between the Rabi oscillations and the collapse-revival mode and investigate the atomic inversion and the Q-function. We identify and numerically demonstrate the region of parameters where significantly large entanglement can be obtained. Most interestingly, it is shown that features of the entanglement is influenced significantly when the multi-photon process is involved. Finally, we obtain illustrative examples of some novel aspects of this system and show how the off-resonant case can sensitize entanglement to the role of initial state setting.Comment: 18 pages, 9 figure

    Computing prime factors with a Josephson phase qubit quantum processor

    Full text link
    A quantum processor (QuP) can be used to exploit quantum mechanics to find the prime factors of composite numbers[1]. Compiled versions of Shor's algorithm have been demonstrated on ensemble quantum systems[2] and photonic systems[3-5], however this has yet to be shown using solid state quantum bits (qubits). Two advantages of superconducting qubit architectures are the use of conventional microfabrication techniques, which allow straightforward scaling to large numbers of qubits, and a toolkit of circuit elements that can be used to engineer a variety of qubit types and interactions[6, 7]. Using a number of recent qubit control and hardware advances [7-13], here we demonstrate a nine-quantum-element solid-state QuP and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produces coherent interactions between five qubits and verify bi- and tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In the final experiment, we run a three-qubit compiled version of Shor's algorithm to factor the number 15, and successfully find the prime factors 48% of the time. Improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms.Comment: 5 pages, 3 figure

    Entanglement Sharing in the Two-Atom Tavis-Cummings Model

    Full text link
    Individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. We investigate how this type of multipartite entanglement is generated in the context of a system consisting of two two-level atoms resonantly coupled to a single mode of the electromagnetic field. The dynamical evolution is studied in terms of the entanglements in the different bipartite partitions of the system, as quantified by the I-tangle. We also propose a generalization of the so-called residual tangle that quantifies the inherent three-body correlations in our tripartite system. This enables us to completely characterize the phenomenon of entanglement sharing in the case of the two-atom Tavis-Cummings model, a system of both theoretical and experimental interest.Comment: 11 pages, 4 figures, submitted to PRA, v3 contains corrections to small error

    Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1

    Get PDF
    The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions

    Full text link
    The osmotic virial coefficient B2B_2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the ``primitive model''. The salt and counter-ions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2B_2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fail for large ionic strength. The observed non-monotonicity of B2B_2 is compared to experiments. Implications for protein crystallization are discussed.Comment: 43 pages, including 17 figure
    corecore