111 research outputs found

    Extended Kramers-Moyal analysis applied to optical trapping

    Full text link
    The Kramers-Moyal analysis is a well established approach to analyze stochastic time series from complex systems. If the sampling interval of a measured time series is too low, systematic errors occur in the analysis results. These errors are labeled as finite time effects in the literature. In the present article, we present some new insights about these effects and discuss the limitations of a previously published method to estimate Kramers-Moyal coefficients at the presence of finite time effects. To increase the reliability of this method and to avoid misinterpretations, we extend it by the computation of error estimates for estimated parameters using a Monte Carlo error propagation technique. Finally, the extended method is applied to a data set of an optical trapping experiment yielding estimations of the forces acting on a Brownian particle trapped by optical tweezers. We find an increased Markov-Einstein time scale of the order of the relaxation time of the process which can be traced back to memory effects caused by the interaction of the particle and the fluid. Above the Markov-Einstein time scale, the process can be very well described by the classical overdamped Markov model for Brownian motion.Comment: 14 pages, 18 figure

    Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka

    Get PDF
    We investigate changes in the delivery and oceanic transport of Amazon sediments related to terrestrial climate variations over the last 250 ka. We present high-resolution geochemical records from four marine sediment cores located between 5 and 12° N a

    Anisotropic thermally activated diffusion in percolation systems

    Full text link
    We present a study of static and frequency-dependent diffusion with anisotropic thermally activated transition rates in a two-dimensional bond percolation system. The approach accounts for temperature effects on diffusion coefficients in disordered anisotropic systems. Static diffusion shows an Arrhenius behavior for low temperatures with an activation energy given by the highest energy barrier of the system. From the frequency-dependent diffusion coefficients we calculate a characteristic frequency ωc1/tc\omega_{c}\sim 1/t_{c}, related to the time tct_c needed to overcome a characteristic barrier. We find that ωc\omega_c follows an Arrhenius behavior with different activation energies in each direction.Comment: 5 pages, 4 figure

    Macromolecular theory of solvation and structure in mixtures of colloids and polymers

    Full text link
    The structural and thermodynamic properties of mixtures of colloidal spheres and non-adsorbing polymer chains are studied within a novel general two-component macromolecular liquid state approach applicable for all size asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concentrated, are presented and compared to field theory and models which replace polymer coils with spheres. Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling laws where available, important differences from ``effective sphere'' approaches are found for large polymer sizes or semi-dilute concentrations.Comment: 23 pages, 10 figure

    Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation

    Get PDF
    publisher: Elsevier articletitle: Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation journaltitle: Quaternary Science Reviews articlelink: http://dx.doi.org/10.1016/j.quascirev.2016.06.012 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved

    Source-specific biomarkers as proxies for Arctic and Antarctic sea ice

    Get PDF
    Over the last decade or so, certain source-specific C-25 highly branched isoprenoid (HBI) lipid biomarkers have emerged as useful proxies for Arctic and Antarctic sea ice. Thus, IP25 (Ice proxy with 25 carbon atoms) and IPSO25 (Ice proxy for the Southern Ocean with 25 carbon atoms) represent binary measures of past seasonal sea ice in the Arctic and Antarctic, respectively. A further tri-unsaturated HBI (generally referred to as HBI III) appears to provide proxy evidence for the region of open water found adjacent to sea ice (i.e. the marginal ice zone (MIZ)) in both polar regions. This review provides an update on current knowledge pertaining to each proxy. The first section focuses on describing those studies that have aimed to establish the underlying features of each proxy, including source identification and spatial distribution characteristics. The second section presents some important analytical considerations pertinent to the accurate identification and quantification of HBI biomarkers. The third section describes how each HBI proxy is normally interpreted within the sedimentary record for palaeo sea ice reconstruction purposes. This includes the interpretation of individual and combined biomarker profiles such as the PIP25 index and multivariate decision tree models. A summary of all previous palaeo sea ice reconstructions based on HBIs is also given, which includes examples that clarify or reinforce our understanding of the individual or combined biomarker signatures. Some knowledge gaps and areas for future research are also briefly described

    Magnesium and bromine exafs studies of grignard compounds in solution

    No full text
    The Grignard compounds MeMgBr and EtMgBr in n-Bu2O were studied at room temperature and — 85°C by extended X-ray absorption fine structure (EXAFS) spectroscopy above the magnesium and bromine K edges. The magnesium EXAFS studies were performed in the fluorescence mode with an UHV compatible cell for liquid samples. At both temperatures, dimers of the Grignard compounds are observed. By a combined analysis of the magnesium and bromine EXAFS spectra, the structure of the dimers of the Grignard compounds is deduced. Copyright © 1996 Elsevier Science Lt
    corecore