7,431 research outputs found

    Projection transparencies from printed material

    Get PDF
    Method for preparing project transparencies, or view graphs, permits the use of almost any expendable printed material, pictures, charts, or text, in unlimited color or black and white. The method can be accomplished by either of two techniques, with a slight difference in materials

    Ageing and relaxation times in disordered insulators

    Full text link
    We focus on the slow relaxations observed in the conductance of disordered insulators at low temperature (especially granular aluminum films). They manifest themselves as a temporal logarithmic decrease of the conductance after a quench from high temperatures and the concomitant appearance of a field effect anomaly centered on the gate voltage maintained. We are first interested in ageing effects, i.e. the age dependence of the dynamical properties of the system. We stress that the formation of a second field effect anomaly at a different gate voltage is not a "history free" logarithmic (lnt) process, but departs from lnt in a way which encodes the system's age. The apparent relaxation time distribution extracted from the observed relaxations is thus not "constant" but evolves with time. We discuss what defines the age of the system and what external perturbation out of equilibrium does or does not rejuvenate it. We further discuss the problem of relaxation times and comment on the commonly used "two dip" experimental protocol aimed at extracting "characteristic times" for the glassy systems (granular aluminum, doped indium oxide...). We show that it is inoperable for systems like granular Al and probably highly doped InOx where it provides a trivial value only determined by the experimental protocol. But in cases where different values are obtained like in lightly doped InOx or some ultra thin metal films, potentially interesting information can be obtained, possibly about the "short time" dynamics of the different systems. Present ideas about the effect of doping on the glassiness of disordered insulators may also have to be reconsidered.Comment: to appear in the proceedings of the 14th International Conference on Transport and Interactions in Disordered Systems (TIDS14

    Targeted Therapies for Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer has the highest mortality rate of all gynaecological malignancies. Most women present with advanced disease and develop a recurrence after radical surgery and chemotherapy. Improving the results of first- or subsequent-line chemotherapy has been slow, and novel approaches to systemic treatment are needed. Ovarian cancer is a heterogeneous disease with complex molecular and genetic changes. Understanding these better will provide information on the mechanisms of resistance and opportunities to target therapy more rationally, exploiting specific changes in the tumour. Here we reviewed targeted approaches to therapy, focussing on targeting angiogenesis and inhibition of DNA repair, 2 areas that show promising activity. Additionally, we reviewed studies that are underway, targeting the cell cycle, signalling pathways and immunotherapeutic strategies. Many of these innovative approaches already demonstrate promising activity in ovarian cancer and have the potential to improve the outcome in women with ovarian cancer

    Micrometeorological processes driving snow ablation in an Alpine catchment

    Get PDF
    Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micrometeorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological model (ARPS) with a fully distributed energy balance model (Alpine3D). Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modelled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances except for very strong wind conditions. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is below a critical value. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.<br/

    Geometry and arithmetic of verbal dynamical systems on simple groups

    No full text

    Combinatorial properties of triplet covers for binary trees

    Get PDF
    It is a classical result that an unrooted tree TT having positive real-valued edge lengths and no vertices of degree two can be reconstructed from the induced distance between each pair of leaves. Moreover, if each non-leaf vertex of TT has degree 3 then the number of distance values required is linear in the number of leaves. A canonical candidate for such a set of pairs of leaves in TT is the following: for each non-leaf vertex vv, choose a leaf in each of the three components of TvT-v, group these three leaves into three pairs, and take the union of this set over all choices of vv. This forms a so-called `triplet cover' for TT. In the first part of this paper we answer an open question (from 2012) by showing that the induced leaf-to-leaf distances for any triplet cover for TT uniquely determine TT and its edge lengths. We then investigate the finer combinatorial properties of triplet covers. In particular, we describe the structure of triplet covers that satisfy one or more of the following properties of being minimal, `sparse', and `shellable'

    Rural Residential Water Demand in Kentucky: An Econometric and Simulation Analysis

    Get PDF
    This study proposed that demand management through pricing policies can be used in conjunction with supply management to solve water supply problems in Kentucky. Economic principles were shown to apply to rural residential water use. From the economic model, a hyperbolic demand function was theorized. The mathematical form of this function used quantity of water as a function of price, income, value of residence, evaporation, and persons per residence. This function was estimated using ordinary least squares regression. A log-linear model was found to be a satisfactory representation of the demand function. Price was the only independent variable which was significant and had an elasticity of (-.92). As an application of pricing to demand management, the estimated regression equation was used in a simulation analysis. The simulation was used to determine the reservoir capacity necessary to supply the needs of 4,000 households given three different price levels for water. Reservoir size was determined by simulating reservoir size as a function of outflow as estimated from the demand function plus an assumed low flow rate and inflow from the Thomas-Fiering Model. This technique illustrated that price does affect the quantity of water demanded which in turn effects reservoir capacity requirements

    Ulta-slow relaxation in discontinuous-film based electron glasses

    Full text link
    We present field effect measurements on discontinuous 2D thin films which are composed of a sub monolayer of nano-grains of Au, Ni, Ag or Al. Like other electron glasses these systems exhibit slow conductance relaxation and memory effects. However, unlike other systems, the discontinuous films exhibit a dramatic slowing down of the dynamics below a characteristic temperature TT^*. TT^* is typically between 10-50K and is sample dependent. For T<TT<T^* the sample exhibits a few other peculiar features such as repeatable conductance fluctuations in millimeter size samples. We suggest that the enhanced system sluggishness is related to the current carrying network becoming very dilute in discontinuous films so that the system contains many parts which are electrically very weakly connected and the transport is dominated by very few weak links. This enables studying the glassy properties of the sample as it transitions from a macroscopic sample to a mesocopic sample, hence, the results provide new insight on the underlying physics of electron glasses.Comment: 4 pages, 4 figure

    Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k-representation

    Full text link
    We present here an augmented space recursive technique in the k-representation which include diagonal, off-diagonal and the environmental disorder explicitly : an analytic, translationally invariant, multiple scattering theory for phonons in random binary alloys.We propose the augmented space recursion (ASR) as a computationally fast and accurate technique which will incorporate configuration fluctuations over a large local environment. We apply the formalism to Ni55Pd45Ni_{55}Pd_{45}, Ni_{88}Cr_12} and Ni50Pt50Ni_{50}Pt_{50} alloys which is not a random choice. Numerical results on spectral functions, coherent structure factors, dispersion curves and disordered induced FWHM's are presented. Finally the results are compared with the recent itinerant coherent potential approximation (ICPA) and also with experiments.Comment: 20 pages, LaTeX, 23 figure
    corecore