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ABSTRACT 

This study proposed that demand management through pricing 
policies can be used in conjunction with supply management to solve water 
supply problems in Kentucky. Economic principles were shown to apply to 
rural residential water use. From the economic model, a hyperbolic demand 
function was theorized. The mathematical form of this function used quantity 
of water as a function of price, income, value of residence, evapora~ion, 
and persons per residence. This function was estimated using ordinary least 
squares regression. A log-linear model was found to be a satisfactory 
representation of the demand function. Price was the only independent 
variable which was significant and had an elasticity of (-.92). 

As an application of pricing to demand management, the estimated 
regression equation was used in a simulation analysis. The simulation was 
uo1ed to determine the reservoir capacity necessary to supply the needs of 
4, 000 households given three different price levels for water. Reservoir 
size was determined by simulating reservoir size as a function of outflow as 
estimated from the demand function plus an assumed low flow rate and inflow 
from the Thomas-Fiering Model. This technique illustrated that price does 
affect the quanticy of water demanded which in turn effects reservoir capacity 
requirements. 

CESCRIPTORS: 

Water Demand, Elasticity of Demand, Water Management, Model Studies 
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CHAPTER 1 

INTRODUCTION 

In the past water has generally been relatively abundant; however, 

today this is no longer the case. Water has become a resource that is 

relatively scarce. Recently, widespread public concern has been voiced 

with regard to the availability of water for residential purposes. To 

underscore the problem, Congress established the National Water Commission 

in 1968 to review the water requirements in the United States. The Com

mission (1973, p. 259) made three recommendations with regard to water 

management for residential and other uses: 

7-21. "Water management agencies should review their 
metering and pricing policies. Wherever economically 
justified, meters should be installed and water deliveries 
measured. Where feasible, water and sewerage charges 
should be based on two considerations: (a) the costs that 
users impose upon the system, and (b) the costs imposed 
on society from the loss of the use of the resource for other 
purposes. Provision should also be made for recovery of 
unintended windfall benefits conferred upon affected properties 
by construction of facilities. 

7-22. Where water is a scarce resource, states should 
investigate the legal and institutional feasibility of imposing 
withdrawal charges on self-supplies of water diverting from 
surface and ground water sources as a means of imposing 
efficiency in water use. 

7-23. All federal agencies that supply water to users should 
adopt a uniform policy of cost-based pricing in all future water 
supply contracts, and, wherever practicable, extend that 
policy to classes of users who are not now charged." 
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The reason for concern by the Commission becomes evident when it is 

recognized that water use in the United States quadrupled since 1900 while 

population only doubled. Seasonal and daily peaks in water use cause 

complex problems, while costs of building water facilities have increased 

substantially. It is, therefore, timely that research is directed toward 

providing information useful in solving a growing problem of residential 

water scarcity in the United States. 

Problem 

Previous research on water demand has been primarily concerned 

with the availability of irrigation water in the West. Research projects have 

focused on residential water demand in urban areas; however, few studies 

have focused on residential demand in rural areas. This author is aware 

of only one study on rural residential water usage in Kentucky (Rosenstiel 

1970). 

Two major sources of residential water in Kentucky are ground and 

surface water. Rainwater is used as a source of residential water in rural 

areas where ground and surface water are especially scarce. Ground water 

has been gradually decreasing in importance because the depth at which the 

water is found makes it uneconomical for use, and the high mineral content 

makes it undesirable. Thus, surface water is the most important water 

source. Since surface water is not readily available everywhere, many 

communities build water reservoirs. 

Water supply reservoirs are generally built large enough to ensure 

an adequate supply of water to a community at all times. Overinvestment 

in plant and equipment occurs when utilities attempt to ensure enough water 

for daily and seasonal peaks. At present, water demand considerations are 

not fully recognized in design analyses. Simulation models, utilizing 

information on demand parameters obtained in this study in conjunction with 

hydrologic parameters, could be used to eliminate overinvestment in water 

reservoirs. This can be accomplished by raising the price of water to 
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lower the quantity of water demanded during periods of high demand or low 

supply. 

Objectives 

The objectives are: 

1. To estimate a demand relationship for water by residents 

of rural areas in Kentucky, It is postulated that price, 

income, evaporation, value of residence, and persons 

per household affect the water demand function. 

2. To use the estimated demand relationship in a simulation 

model to show the effect of different pricing levels on 

the size of water reservoir required by a given numher 

of customers. 

Two approaches make this study unique: 

1. Price data used in the analysis show a larger variation 

for rural residential use than is the case in other 

studies. This makes it possible to estimate elasticities 

d. demand over a wider range of price levels than in 

past studies, and 

2. To the authors' knowledge, this is the first rural 

residential water study that uses elasticities of demand 

and other parameters in a simulation model to show 

how different price levels for water can affect the size 

water reservoir required to meet the needs of a specific 

size co=unity. 

The establishment of a demand relationship will enable water utility managers 

to set rates consistent with economic efficiency criteria. To achieve 

efficiency various pricing strategies are available: 
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1. Differential pricing by quantity demanded, 

2. Differential pricing by season, 

3. Differential pricing by time period. 

The first strategy uses a rate schedule that depends upon the amount of 

water used. Presently, customers who use large quantities of water are 

charged a lower price per unit. An alternative strategy, which will be 

discussed later, involves pricing water at higher rates as water use increases 

to improve economic efficiency. Differential pricing by season is a method 

of decreasing (increasing) water usage in times of inadequate (ample) supply. 

Non-pricing methods are frequently used instead of differential pricing 

methods in times of water shortage. Non-pricing methods often take the 

form of a quota. For example, customers may be prohibited from using 

water for certain purposes such as lawn watering. Pricing methods are 

more efficient than quotas because they give the customer the choice of 

purchasing water at a higher price or reducing use. The last strategy 

involves setting a higher rate for water used during peak periods of the day. 

Using this pricing method, water would be used more evenly throughout the 

day. Hence, less storage and equipment capacity would be required. 

Water Management 

In a market economy, prices determine the uses made of scarce 

resources. Price has not been used to allocate water among users since 

water traditionally has not been considered scarce. This attitude is 

changing with the increasing difficulty and expense in obtaining sufficient 

quantities of potable water. Price can be used to allocate water while 

maximizing social welfare if the distribution of income is considered ap

propriate by society. This result is achieved when water is supplied at a 

price in which the value to consumers of the marginal (last) unit of water 

purchased equals the price of that unit. 
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The construction of a demand function for water follows a procedure 

similar to that used for other economic (scarce) goods. An individual will 

pay a very high price (probably everything he owns) for the first units of 

water he receives. When the level of consumption at which an individual 

considers 'necessary' for life is reached; the price he is willing to pay for 

extra units of water decreases. The individual will only accept additional 

units of water at lower and lower prices as he consumes more and more 

water. The concept of diminishing marginal utility thus underlies the demand 

for water just as it underlies the demand for other scarce goods. 

Traditionally, water utility managers have adjusted water quantities 

rather than prices as changes in demand occur, The major reason for 

emphasis on supply (quantitY) management by utility managers is that water 

utility managers have traditionally viewed the total quantity of water demanded 

by consumers to be essential. Historically, water has been available at low 

cost, and economists have not become involved in water demand management. 

Hence, in the past, water investment decisions have been delegated to the 

political and not the economic sphere. 

By allowing water to be supplied by the, •requirements• type of 

forecasting, the range of our choices has been constrained. Judith Rees 

(1969, p. 28) comments: 

"It would be impossible to rectify shortages of all goods 
by increasing the supply, as the economy's resources are not 
indefinitely expandable. There appears to be no rational 
grounds for allowing water supplies to be extended to meet 
all foreseeable •needs', when the supply of most other 
commodities is only increased by foregoing alternative goods. 
It is possible that the construction of additional water supply 
capacity is diverting resources away from uses valued more 
highly on the margin by consumers." 

We must begin to reappraise the policy of supplying water without regard to 

cost. The premise of this study is that future water supply problems are 

primarily economic. Pricing is a powerful tool that could be used to 

allocate water in a manner that maximizes social benefit. 

5 



Considerable research has been conducted on water demand. Much 

research has focused on demand for irrigation water. However, a few 

studies have been conducted for residential water demand. Wong (1972) 

indicates possible reasons for the paucity of available literature on resi

dential water demand. He states that the problem is due to the absence of an 

economic policy on municipal water demand. He expresses four additional 

problems encountered in water demand studies. 

First, there are difficulties associated with making econometric 

analyses for residential water demand. Numerous data problems arise in 

undertaking a water demand study. Water consumption data are at best only 

'guestimates• because of the errors arising in measuring water withdrawn by 

a household. Some systems do not have metering. Others combine resi

dential water use with other uses which makes it impossible to determine 

the amount of water used by each household. Billings vary from one month 

to one year which makes it difficult to determine seasonal water uses. As a 

result, there is a considerable range in water use among households in 

different water districts. In Kentucky, an additional problem may exist. 

Rural households have been !mown to supplement the purchased water with 

additional water sources (Rosenstiel 1972). Differences in quality of water 

and service will also affect water purchase. Unless these differences can 

be quantitatively measured, the empirical analysis cannot be done with a 

high degree of confidence. 

A second difficulty arises with regard to price data. There is 

no uniform water pricing policy. Most water utilities sell water using a 
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declining block rate (the rate decreases as consumption increases in the 

form of blocks that allow a specific amount of water). There is a difference 

in the number of blocks for each utility and the amount of water sold with the 

minimum bill (a fixed rate for the first units of water sold). Some systems 

will include a sewerage charge with the water bill. Rate determination is 

complicated by the pervasive belief that water should be nominally priced, 

since many water systems are public, and the water utility could be subsi

dized through truces to keep water rates artifically low. 

The third problem arises with income data for residences •. A 

number of studies have used mean family income obtained from the Census 

of Population or the true roles. Other variables, such as assessed property 

value, size of lot, and the number of rooms per dwelling are also often used. 

Income and other socioeconomic data need to beproperly matched with the 

respective water district. Frequently, water districts do not correspond 

with the same geographic boundaries in which the income data were 

collected. 

Finally, there exists the problem of sample reliability. With time

series data, the period chosen may be too short (e.g. , five years or less 

for a series); while with cross-sectional data, the sample may be too small 

(e.g., six or seven observations as a sample for a state). The result would 

be a sample with only a few degrees of freedom which will reduce sample 

reliability. Thus, data problems make econometric analyses difficult. 

Previous Studies on Water Use 

Wong's (1972) study was concerned with residential water demand 

in Northeastern Illinois. The first part of his study was a time-series 

analysis of Chicago and its outlying communities from 1951-1961. The 

second part was a cross-sectional analysis of 103 communities which he 

stratified into four community size groups: 25, 000-over, 10, 000 -24, 999, 
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5, 000 -9, 000, and 4, 999 and less. His basic statistical method was ordinary 

least squares (OLS) regression analysis. Average per capita municipal 

demand was regressed on price per unit, average household income, and 

average summer temperature. A multiplicative form was used to fit the 

demand function. 

Wong found that over time both income and average summer temper

ature had a significant impact on water demand in Chicago, with simple 

correlations of, 74 and , 77 respectively. In Chicago, price was found to be 

nonsignificant, but for its outside communities, price was found to be 

significant at the 5 percent level and income was nonsignificant, Per 

capita demand was found to be relatively inelastic with respect to price 

and income. 

Rosenstiel (1970) completed a rural residential water study in a 

Kentucky county to describe characteristics of domestic water use among 

rural residences and to delineate factors affecting water purchase. He 

studied 39 households that purchased water from a rural water vender who 

hauled water with a truck. Every customer had an alternative source of 

water (rainwater), Only 59 percent of the customers purchased water 

regularly. People in the study purchased 1, 000 to 24, 000 gallons of water 

annually at a mean price of $5. 83 per 1,000 gallons. Rosenstiel's equation 

contained 13 variables of which price and income were found significant at 

the . 001 level of significance at 25 degrees of freedom. 

The Chiogioji and Chiogioji (1973) study is an extensive review of 

literature and source of theoretical and empirical findings dealing with resi

dential, commercial, and industrial water use. The study attempted to 

measure the effectiveness of adjusting water prices to conserve the use of 

water supplies. Recommendations were nnde as to the adjustments which must 

be made if pricing is to be used as an effective water management tool. In order 

to verify and collaborate the literature, the investigators interviewed key 
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executives of water utilities located in Washington, D, C, and throughout 

the United States. Empirical data gathered in the Washington metropolitan 

area indicated that price increase did have an impact on water consumption; 

however, reductions lasted only a year or two. Data revealed that in the 

years in which price increases occurred, twelve out of eighteen price 

increases resulted in a decrease in per capita consumption. 

A time-series and cross-sectional study on residential, commercial, 

and industrial water use was conducted by Headley (1963) on fourteen cities 

in the San Francisco-Oakland metropolitan areas. Significant positive 

relationships between family income and residential water purchases were 

found both with cross-section and time-series data. Elasticities of demand 

for residential water with respect to income were larger in the cross-

sectional analysis than in the time-series analysis. After estimating d~mand 

parameters, Headley formulated a projection model for 1975 predicting a 5. 8 percent 

to 10. 7 percent increase in residential water use over the 1959 level. He concluded 

that family income is an important variable in the projection of future water 

demand and that it is a good proxy variable for water use factors such as lot 

size, number of bathrooms, automatic washers, etc. 

Gottlieb (1963) utilized detailed reports on water use in Kansas 

from 1952-1958. For one-third of the reported systems, basic water rates 

in 1956 were identical to those charged in 1952, while between 1956 and 1958, 

76 percent of the systems had unchanged rates. For two periods of years, 

1952-57 (in which there were 40 systems) and 1956-58 (in which there were 

79 systems), Gottlieb classified the water systems as 'increasing-rate' or 

'all other'. One-fifth of the systems over the 1956-58 period, raised rates 

at a mean of 24. 3 percent, while two-thirds raised rates at a mean of 32. 5 

percent in the latter period. The 'all other' system experienced a decline 

in per capita water use of 6, 7 percent from 1952-57 and 20 percent from 

1956-58. The 'increasing rate' system experienced a decline of 16 percent 

and 26. 4 percent respectively. In conclusion, 'increasing rate' systems did 
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show a greater decrease in water use during the periods indicating that 

price does affect water consumption. 

Based on a theoretical model revealing how individuals respond to 

a co=odity uncertain in supply, Tumovsky (1969) estimated demand 

functions for water in situations where supplies are known to be stochastic. 

The data came from a sample of nineteen small Massachusetts' towns. 

Separate functions for household demand and industrial demand were estimated 

in two cross-sections, 1962 and 1965. In his household regression equation, 

per capita consumption and planned per capita consumption were a function 

of the variance of supply, average price of water, index of per capita housing 

space, and the percentage of population under age 18. The industrial model 

replaced the index of per capita housing space and the percentage of popu

lation under age 18 with an index of per capita industrial production. Time

series data from 1950-52 and 1950-65 were used to estimate the variance of 

supply. Turnovsky found price, uncertainty as measured by supply variance, 

and housing space to be significant for household demand. For industrial 

demand only the first two variables were significant. Firms were found to 

be more responsive to price and uncertainty than households. 

Howe and Linaweaver (1967) concentrated on the effect that price 

had on the quantity of water demanded by residential customers for indoor 

and outdoor uses. They found that water users do respond to a price increase 

from zero to some positive rate imposed by metering. This response is 

illustrated in Table 1, which refers to averages for 10 metered and 8 flat

rate areas, all in the Western United States. Two items which stand out are: 

(1) average household uses do not differ substantially between metered and 

flat-rate areas; (2) sprinkling uses and peak demand are vastly different. 

In the 39 residential study areas used in this study, average annual 

use per capita ranged from 47 gpcd (gallons per capita per day) to 437 gpcd. 
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TABLE 1 

WATER USE IN METERED AREAS AND FLAT RATE AREAS 
(Oct.ober, 1963 through September, 1965) 

Annual Average 

Leakage and Waste 
Household 
Sprinkling 

Total 

Maximum Day 

Peak Hour 

Annual 

Sprinkli.Dg. 
Potential Evapotranspiration 

Summer 

Sprinkling 
Potential Evapotranspiration 
Precipitation 

For 10 
Metered Areas 

For 8 
Flat-Rate Areas 

(gal/day/per dwelllng unit) 

25 
247 
186 

458 

979 

2,481 

12.2 
29.7 

7.4 
11.7 
0.15 

(Inches of water) 

36 
236 
420 

692 

2,354 

5,170 

38. 7 
25.7 

27.3 
15.1 
4.18 

Source: (Linaweaver, Beebe, and Shrivan, 1966.) 
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The average-number of persons per dwelling unit ranged from 1. 8 to 4. 9. 

The maximum_day to average_dai!y water usage ratio-ranged fr<>m 1, 57 -- -
t<> 5.41 and-peak hour average from 2.47 to 16. 5. 

Howe and Llnaweaver found from fitting the regression equations 

that prlce elasticity for metered public sewer areas was approximately -. 23, 

quite 'inelastic'. The income elasticity, as measured by the surrogate of 

property value was approximately • 35 for all public sewer areas. Population 

density (measured as the number of persons per dwelling unit) strongly 

affected domestic demand; while frequency of billing and the regional prlce 

index appeared to have no significant impact on demand or upon price 

elasticities. 

Grlma's (1972) study focused on the identification of variables that 

affect the level of residential water use and the level of the related invest

ment in water supply in South Central Ontario. Data collection occurred in 

1967, and at the time, two-fifths of the p<>pUlation in the study area had non

metered residential water. Llnear and log-linear forms of the regression 

equations were fitted. Water use by households was averaged over a year 

(the summer period and the winter period). The fitted equations for metered 

and single-unit dwellings included assessed sales value of residence, number 

of persons per dwelling unit, the marginal price, and the fixed bill as 

independent variables. The partial regression coefficients were all sig

nificantly different from zero and had the expected signs. After testing 

both linear and log-linear forms, he found that the log-linear form provided 

a better fit. Price elasticity during the winter period was-. 75 and for the 

summer period it was -1. 07. Income elasticities were • 48 for winter and 

• 51 for the summer period. 

The second objective of Grima's study was to obtain an approximate 

estimate of the impact of policy alternatives on investment requirements. 

The assumptions made were: 
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1. The community seived consisted of 200, 000 people 

living in 50, 000 single unit dwellings. 

2. Required investment was $150 per resident for 

residential water supply, and 

3. Changes in capacity demand have a proportionate 

affect on 65 percent of the required investment. 

If $300 per capita is required to build a municipal water supply system, the 

total required investment is $60 million of which half is ascribed to resi

dential water users. Of this $30 million, it is possible to effect 65 percent 

by reducing the design capacity (Table 2). 

Summary 

The objective of a literature review is to gain a better under

standing of the significance of factors affecting residential water use. 

Previous attempts to model residential water use indicate a wide variety 

of approaches and of the type of sample data collected. There are also 

some discrepancies in the results. Nonetheless, previous studies do 

provide a basis for going beyond the approach of estimating requirements 

and attempt to model water use in terms of the identification of relevant 

explanatory variables. 
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TABLE 2 

THE EFFECT OF DEMAND MANAGEMENT ON RESIDENTIAL 
WATER USE AND INVESTMENT REQUIREMENTS 

Policy Alternative 
Reduction in Water Use Reduction in Investmenta 

(Avg. Summer Day) 

Meter, marginal charge= 
40¢/1, 000 gal. 

Meter, marginal charge = 
60¢/1, 000 gal. 

Meter, marginal charge = 
80¢/1, ooo gal. 

Charge a marginal price of 6~ 
instead of 40¢/1, 000 gal. 

Charge a marginal price of 80¢ 
instead of 60¢/1,000 gal. 

Percent 

23 

50 

63 

35 

26 

Percent $ Million 

15 4.5 

32.5 9.8 

41 12.3 

23 6.9 

17 5.1 

~otal investment ascribed to residential water use is $30 million. 

Source: (Grima 1970, p. 190). 
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CHAPTER II 

RESEARCH PROCEDURES 

It has traditionally been argued that a rate charged for water should 

cover the total costs of service including a 'fair' rate of return for investors 

in the water company. Presently, average cost pricing (average cost being 

equal to the total cost of making water available to the user divided by the 

units of water produced) is often used by water utilities. One way for the 

water company to recover total costs is to set price (P) equal to average 

cost (AC) so that P • Q = AC • Q (where Q = quantity), or total revenue 

equals total cost. Water utility managers often consider the average cost 

principle fair because: 

\ 1. Water utilities are expected by society to supply 

water to their customers cheaply without •excess' 

profit. 

2. Every customer pays the entire cost of the units of 

water consumed instead of paying only the additional 

cost of producing these units. 

3. The customer is not required to pay more for the 

water than the actual costs of supply. 

4. The average cost price is a reliable criterion for 

investment, and 

5. Average cost pricing covers the entire expenditure 

of the undertaking (Gupta, 1968, p. 25). 

However, the economist seeking efficiency might prefer marginal cost 

pricing (marginal cost being equal to the addition to total cost attributable 

to an incremental 'unit' increase in water supply). Economic efficiency is 
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obtained when society receives the greatest total benefit from its scarce 

resources. In order to become efficient, output of any commodity in a 

society should be at a level where marginal costs equal marginal benefits 

(the point where price is equated to marginal cost). At this point, the well

being of society is maximized and the industry is at a Pareto efficient level 

of output (a point where every reorganization that augments the value of one 

variable necessarily reduces the value of another). 

Pricing Models 

Figure 1 depicts a marginal cost pricing model. In this case, 

Pareto efficiency is obtained because price (P1) is equal to short run 

marginal cost (SMC1). The SMC1 schedule, which is the water supply 

function, increases gradually until full capacity is reached. The function 

then becomes vertical. The long-run marginal cost function (LMC) represents 

operating and capacity costs, and increases steadily. Equilibrium will occur 

where price (P) equals SMC1, until SMC1 equals LMC. If demand increases 

beyond this point, the building of additional capacity represented by SMC2 

is justified because marginal benefits exceed marginal costs. 

This pricing system is based on the assumption that the water utility 

industry is an increasing cost industry. The water utility industry in 

Kentucky as a whole, exhibits increasing average costs over time because 

as water supplies become insufficient, new reservoirs are built or present 

facilities are expanded. Cost data for residential water production are not 

readily available; however, Grima (1972, p. 132) gives two reasons for 

expecting the costs of residential water to increase over time. 

1. "As new subdivisions are opened up away from the 
source of water, pumping and related costs should increase 
to overcome the friction of distance and this cost is 
additional to the increase in pumping costs per million 
gallons produced; mains transmission average costs 'WOuld 
also tend to increase slightly if the density of building is 
reduced. 
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Cost/ 
Price 

0 

Quantity 

Source: (Adapted from Warford, 1966, p, 97). 

Fig. 1. --Marginal cost pricing, 
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2. Peak demands for residential water are increasing 
faster than average daily demands. This is due to higher 
income and larger lawns. Supply facilities (source 
development, treatment, distribution, and storage 
facilities) are expanded to cope with the higher peak 
demand and there is more excess capacity during off
peak periods. The proportion of idle plant during the 
off-peak season will increase over time thus increasing 
average costs." 

Figure 2 illustrates short and long-run average and marginal cost 

functions for water supply. Assume that the third incremental unit is the 

latest addition to the water supply system. If demand is D1, short-run 

marginal cost pricing will produce a loss because short-run marginal cost 

(SMC3) is less than short-run average cost (SAC3). If the demand function 

is o2, total revenue will equal total cost under marginal cost pricing (since 

price= marginal cost= average cost). If demand shifts further to the right 

where short-run marginal cost (SMC3) exceeds short-run average cost 

(SAC3), marginal cost pricing will produce a profit. The optimum size 

reservoir (Q1) will occur where long-run marginal cost (LMC) intersects 

short-run marginal cost (SMC3). 

Kentucky Water Pricing Model 

Figure 3 represents a pricing model for Kentucky water utilities. 

In Kentucky, municipal water utilities build and operate water supply 

reservoirs. Rural water districts, which do not own supply reservoirs, 

purchase water from the municipalities. Theprice at which water is sold 

depends upon the cost of the reservoir, that is, the more expensive the 

reservoir, the higher the price charged for water. The amount of excess 

capacity depends upon the cost of the reservoir. A water utility with a 

more expensive reservoir will build less excess capacity and accept the 

greater risk of running low on water. In the model, (SMC1) and (SMC2) 

represent short-run marginal cost functions for two municipalities. 
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Price/ 
Cost 

---
Source: (Grima, 1972, p. 135). 

SMC3 //LMC 
/ 

/ 
I / 
1// LAC 

Quantity 

Fig. 2. --Average and marginal cost functions of 
water supply. 
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Price/ 
Cost 
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Price 

P' 
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P' 
1 

------~--

Q' 2 

Fig. 3. --Kentucky water pricing model. 

LMC 

Quantity 

Demand 

Quantity 

Fig. 4. --Demand function for residential water. 
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Municipality 1 sells water to its customers at price (P1), a price high 

enough to cover its fixed costs. At price (P1) the municipalities• customers 
I 

demand (0 Q1) units of water, leaving an excess capacity of (0 Q1 - 0 Q1) 

which will be sold to the rural water district at price P~. Municipality 2 will 

sell (0 Q2) units of water to its customers at price P 2• This leaves an 
I 

excess capacity of (0 Q2 - 0 Q2) which is sold to the ruml water district 
' at price P2 • The information obtained from this model can be used to trace 

out the supply functions for two rural water districts. By adding additional 

supply functions to the model, it is possible to trace out the rural residential 

demand for water (Figure 4). 

Theoretical arguments for a curvilinear demand function were 

expressed by Grima (1972, p. 92). He stated that: 

"The (coefficients of the) independent variables measuring 
income level and the number of persons in residence should 
show decline in slope as they (the variables) increase. As the 
assessed sales value increases the use of water may be 
expected to increase proportionally at first but beyond some 
point the use of water will not increase as fast. For example, 
water uses for personal hygiene and car washing do not increase 
indefinitely with income. There are some water uses that may 
decline with income (e.g., a high-income family takes longer 
holidays as income rises). 

The same logic applies to the number of persons in 
residence. In the house there are some uses of water that 
do not depend on the size of family (e.g., lawn-springling, 
leakages). As the number of persons in the dwelling unit 
increase such water uses are averaged over a larger number of 
persons." 

Figure 5(a) depicts a model of three demand functions for residential 

water use. D1 represents the demand for essential water uses such as 

drinking, cooking, washing clothes, personal hygiene, and waste removal. 

The demand for such purposes has a very steep slope and the consumer is 

willing to pay a very high price to consume small quantities of water. The 

slope of (D2) is slightly less steep than (D1) and denotes demand for water of 
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Source: (Adapted from Grima, 1972, p. 93). 

Fig, 5. --Curvilinear demand function. 
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lesser importance to the household such as, for lawn watering, and 

appliances such as a dishwasher or garbolator. Dema~d function (Ds) is 

nearly horizontal and indicates the demand for water of least importance, 

such as leakages, careless use in sprinkling, and 'waste'. For these uses, 

the consumer is willing to pay only a very low price and will consume large 

quantities of water. The three demand functions are summed horizontally 

in Figure 5(b). In Figure 5(c) additional demand functions were added to 

depict a continuum of specific water uses ranging from water for drinking 

to water for •waste'. An aggregate demand function for residential water use 

can be constructed by horizontally summing the series of individual demand 

functions. This aggregate demand function illustrates that the total resi

dential demand function is curvilinear. 

Past Elasticity Studies 

Table 1 (Appendix A) summarizes prior research results establish

ing price and income elasticities for water. The objective in reviewing past 

elasticity information is to better understand the demand for water. However, 

it is apparent that there are discrepancies among empirical estimates of 

price and income elasticities Table 1 (Appendix A). The range of results 

makes comparisons between studies difficult and suggests differences in the 

type, source and quality of data used in the studies. Some studies have 

reported inelastic price and income relationships. Howe and Linaweaver 

(1967) observed that per capita water consumption in non-metered areas is 

generally much higher than in metered areas. Hence, the demand for water 

may be relatively elastic in the higher price ranges. 

Bain, Caves and Margolia (1966, p. 162) comment on the useful

ness of elasticity information: 
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"The price elasticity of demand also has significance 
in separate, but related, ways. It is involved, for instance, 
in determining the economic justifiability of any water project 
that is designed to supply water in volume to a previously 
unwatered area, or to substantially augment the water supply 
in an area. . , at a determinable added cost per unit of added 
water supplies. In such advance consideration, there must be 
a definite allowance for the effect of a price of water sufficient 
to cover the added cost on the amount of water which will be 
demanded from the new supply. This is particularly essential 
where introduction of the new supply entails higher water costs 
and prices than those previously experienced in the area. If 
due allowance is not made for the effect on demand of elevated 
water prices, a project may be undertaken which is designed 
to supply more water than would be economically most 
desirable for the area." 

Metering 

There is evidence in the literature to show that metering does 

reduce residential water consumption. The American Water Association 

Committee (1973, p. 287-288) reported: 

"In 1957, a rate increase that raised sewer-service 
charges up to 100 percent of the water bill was passed in 
Owensboro, Kentucky. This increase discouraged the use 
of water for lawn sprinkling and has had a long-lasting 
effect on the water usage of the residential customers on 
the system. 

The total level of cost appears to influence water usage 
in all classes of service to some extent. An examination 
of total revenues and water usage by customer class for 23 
utilities indicated that in areas where the average cost to 
the residential customer was 60-70~/1. 000 gal, customer 
usage averaged approximately 70 percent of that experi
enced in areas where the cost was 20-30~/1, 000 gal. In 
more arid areas, where maintenance of residential lawns 
is dependent upon extensive irrigation, an even greater 
difference in residential water use with increasing cost is 
indicated • " 
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Hanke and Boland (1971, p. 677-81) interviewed 180 persons in Boulder, 

Colorado and found that more than 50 percent of the respondents consciously 

altered their water use habits in response to price increases. An earlier 

study in the same city (Hanke and Flack, 1968, p. 1364) revealed that if 
• water use in a dry year and wet year are averaged; annual water use is 

reduced by thirty-four percent and summer use is reduced by thirty-seven 
' percent through metering (Table 3). There was also no tendency for 

residents to return to former use habits during the six years following 

metering (Table 4). 

Although there are numerous other examples of how metering and 

pricing increases have reduced water consumption, there are still many 

critics of the use of price as a water management tool. Hanke (1970a, p. 

1254) refutes the argument that price increases cause only temporary water 

use reductions when he states: 

"Another generally accepted and erroneous variant of the 
water-is-different philosophy suggests that the installation 
of meters and price increases rapidly become ineffective in 
reducing water use. This view can be clarified by realizing 
that a functional relation at one point in time is not a trend 
over time. For example, let us assume that the demand for 
residential water in 1965 is represented by Di965 below. If 
flat rates (a zero price) exist, the quantity of water demanded 
will be Qfr• The installation of meters in 1965 will reduce 
the quantity demanded from Qfr to Qm when the metered rate 
is Pm· When one views the market a few years later in 1968, 
he will notice that the demand function has shifted to the right 
represented by n1968. This shift could have been caused 
by changing tastes, increased incomes, population increases, 
alterations in habits, or changes in other parameters of the 
demand function. If metered rates are maintained at Pm, 
the quantity of water demanded will increase from Qm to 

Qfr• 

The increase in water used from 1965 to 1968 should not 
lead one to conclude that price increases (metering) are not 
effective after three years. If flat rates were again imposed 
in 1968, the quantity of water demanded would equal Qfr• which 
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Year 

1960 

1965 

1964 

TABLE 3 

EFFECT OF METERING -- BOULDER, COWRADO 

Percent Metered 

5 

100 (wet year) 

100 (dry year) 

Annual Use 
gpcd 

243 

149 

172 

Winter 
gpcd 

154 

107 

111 

Source: (Hanke and Flack, 1968, p. 1364). 
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Summer 
gpcd 

365 

206 
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TABLE 4 

GENERAL TYPES OF REACTIONS TO METERING INTENSITY 
OF REACTION, PERCENT OF THOSE RESPONDING 

More Less Same 

Watched Sprinklers 51.1 1. 7 43.3 

Repaired Outside Leaks 11.0 o.o 67.0 

Stopped Sprinkling Parts 
of the Yard 35.1 o.o 57.2 

Permitted Yard to Tum 
Brown 26.7 1. 7 66.1 

Watered at Night 25.4 o.o 67.2 

Repaired Inside Leaks 6.2 0.0 79.4 

Reduced Use: Household 
Purposes 30.0 2.2 62.2 

Washed Car at Home 1.7 37. 2 52.8 

Source: (Hanke 1970b, p. 1, 384). 
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22.0 
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is considerably greater than the 1968 use under metered 
rates. Price changes induce movements along a demand 
function, whereas other factors cause the locus of the 
function to change. One must be cognizant of both sets of 
phenomena if sound projections of water consumption are 
to be made" (Figure 6). 

Mathematical Form of the Theoretical Model 

A simple single equation model rather than a more complex 

simultaneous equation model, is an appropriate mathematical representation 

of the demand function for rural residential water use. The theoretical 

model clearly reveals that while the price of water is affected by the supply 

of water (amount of excess capacity in the reservoir), the supply of water 

available to rural water systems is not affected by the price. This is 

because the excess capacity of the municipal reservoir was designed merely 

as a safety valve; not for the purpose of selling water to rural water systems. 

Thus, when price is plotted on the vertical axis, the supply functions become 

vertical functions of zero elasticity. Supply functions which evolve from 

reservoirs of alternative sizes, trace out an •average' demand function for 

rural residential water (Figure 7). It is hypothesized that 

where 

(1) Qd = f (P, I, V, E, N) 

Qd = quantity of water demanded by users in thousands of 
gallons/ dwelling unit/year; 
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Price 

Quanti_ty /Unit of Time 

Source: (Hanke, 1970a, p. 1254). 

Fig. 6. --Demand over time. 
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Price/ 
Cost 

Demand 

Quantity 

Source: (Adapted from Shepherd, l963, p. 163). 

Fig. 7. --Demand adjusted by completely inelastic 
supply functions. 
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p = average water bill in dollars/1, 000 gallons; 

I = mean income in thousands of dollars/dwelling unit/year; 

v = value of residence in thousands of dollars; 

E = evaporation in inches for June through September; 

N = number of persons per dwelling unit. 

The variables I, V, E, and N are hypothesized to shift the demand function 

in the price-quantity plane. 

Price 

Rural residential water in Kentucky is priced in two parts: (1) a 

minimum bill which includes a specific amount of water per billing period, 

and (2) a series of decreasing block rates which allow a specified amount 

of water after the amount provided under the minimum bill has been consumed. 

In this study, the average water bill is used because it is the price at which 

all the water sold to the rural water district will be consumed. Although the 

average price is one which no customer pays, average price has the 

advantage of reflecting in a general way the level and structure of rates. 

It is not possible to !!:_ priori specify the exact size of the coefficient on this 

variable. However, theory developed in the chapter suggests that the sign 

on the coefficient will be negative (that less water will be consumed at high 

prices). 

Income 

The income of the consumer profoundly affects consumption 

patterns. In the case of residential water demand, income will affect the 

variety, number, and frequency of use of water-complementary appliances, 

Once water-complementary appliances are purchased, little reduction in their 

use might be anticipated in response to an increase in water rates. Moreover, 
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high income families would be less likely than low income families to be 

concerned with an increasing water bill. 

Value of Residence 

Previous water demand studies have used value of residence as 

an exogenous variable. The value of a residence depends on a number of 

variables which affect water use. Among these are the number of bathrooms, 

the presence or absence of a garage, and lot size. Higher priced homes will 

generally utilize greater amounts of water than low or medium priced homes. 

Evaporation 

Water use is also dependent on the amount of water that is required 

for lawns, gardens, shrubs, and flowers. The evaporation rate is a good 

indicator of the amount of water required for outside uses. Increased 

evaporation rates occur in hot and dry areas. An American Water Works 

Association (1958, p. 1,408) task group found that water use was twice as 

great in areas with dry summers than in areas with no distinct dry season. 

Number of Persons per Dwelling Unit 

Most residential water is used in the bathroom. This particular 

use is a function of the number of persons in a residence, It is estimated 

that each person will use about 30 to 40 gallons of water daily for personal 

hygiene (Grima, 1972, p. 87). However, other studies have not always 

revealed clear evidence of a positive relationship between persons in 

residence and the demand for water. Inadequate variation in the data may be 

one explanation for the nonsignificance in many studies. 
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CHAPTERlll 

DATA AND RESULTS 

Data on residential water use for 1972 were collected from rural 

water districts. Districts were located throughout Kentucky and varied in 

size from about 15 to 2064 customers, Table 2 (Appendix A). Some districts 

crossed county borders while others covered only a section of a county. 

Information obtained from rural water districts was used in an econometric 

analysis to empirically estimate parameters of the theoretical model 

outlined in Chapter n. Least squares regression techniques were employed 

pi estimating model parameters_. 

where 

The general stochastic form of the demand model was 

Qd = 

p = 

I = 

v = 

E = 

N = 

u = 

(2) Qd = f (P, I, V, E, N, u) 

quantity of water used in thousands of gallons/year/dwelling unit 
(obtained from the Kentucky Public Service Commission); 

average water bill in dollars/1, 000 gallons (obtained 
from the Kentucky Public Service Co=ission); 

mean income in thousands of dollars/year/dwelling 
unit (obtained from the Population Census, 1970); 

value of dwelling unit in thousands of dollars (obtained 
from the Housing Census, 1970); 

evaporation in inches for June through September (obtained 
from the Climatological Data - Kentucky, 1972); 

number of persons/dwelling unit (obtained from the 
Housing Census, 1970); 

stochaster error term assumed to be normally distributed 
with a zero mean and a constant variance. 
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It was shown in Chapter II that only a single equation model is needed to 

capture the structural relationship influencing the demand for water from 

rural water systems. This is because the elasticity of supply for water 

to rural water systems is on an .!!: priori theoretical basis assumed to be 

zero. On the basis of the theoretical model, the expected signs on the 
a Qd a Qd aQd 

model parameters are --p- < O, -- > O, -- > 0, and 
a al av 

aQd aQd 
-- > 0, and > O. The partial derivative with respect to 

aE aN 
aQd 

price ( ""'":i"P"), represents the negative slope of the demand function (Figure 

4), while the partial derivatives with respect to the other parameters, 

av --a E ' 

aQd 
~ > 0, represent shifters of the demand 

:Qd 

function in the price-quantity plane. 

Two qualifications must be made when interpreting results: 

1. Regression coefficients estimated in the study may be 

regarded as estimates of the corresponding parameters 

only if a sample of the population is randomly collected. 

In this study, the sample is not random, and the results 

cannot be interpreted without qualification. The main 

objectives of the study were to obtain elasticity estimates 

and to examine the explanatory power of other independent 

variables (demand shifters). To meet the objectives, it 

was necessary to delete 57 observations typically con

sisting of unmetered sales, or water use figures that did 

not differentiate residential from other uses. Some 

observations were on urban areas or private institutions 

which were not a part of this study. 

2. Data on price, water use, and evaporation were for 1972 

while data on income, value of residence and persons per 

household were for 1970. Since water use, income and 
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value of residence tend to increase over time, 

coefficients on explanatory variables may be 

inflated (but probably to only a minor extent). 

A Linear Demand Function 

As a starting point for analysis, a simple linear demand function 

was estimated of the form 

where 

= vector of parameters to be estimated 
using ordinary least squares regression. 

Equation (3) was estimated via ordinary least squares (01..S) using the 

stepwise procedure outlined in Draper and Smith (1966), The usual 01..S 

assumptions as outlined in Draper and Smith (1966, p. 86) were .. made •. 

The fitted equation for the linear model was 

(4) Qd = 12.97 - 12.37P** + 1.711 - 0.85V + 1.62E + 10.78N 

(2. 67) (4. 92) 

R2 = .15 F = 5.os** n = 150 

**Significant at . 01 level 
(standard errors are in parentheses) 

(2.16) (1. 24) (18, 32) 

All of the coefficients had the expected sign with the exception of value of 

residence. Price was the only variable significant at the • 01 level. Value 

of residence was highly intercorrelated with income (Table 3, Appendix A). 

This may partially explain why the sign on value of residence was not as 

theorized. 
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Table 4 (Appendix A) lists the means, standard deviations, and 

ranges for the variables. The range and standard deviation for price and 

quantity data used in this analysis were substantially greater than for data 

used in previous research. These data provided useful information on 

water use in the higher price ranges and increased the predictive range of 

the equation. 

Log-Linear Model 

The theoretical model outlined in Chapter II , Figure 4, 

suggests a demand function in a hyperbolic form which exhibits the 

following characteristics: 

1. The first partial derivative with respect to price is 

2. 

3. 

negative, aQd < o , indioating that the demand 
aP 

function is downward sloping. Remaining coefficients 

are demand 'shifters• and are treated as constants 

when finding the derivative. 

The second partial derivative with respect to price 
aQd2 

must be positive, > O, indioating that the 
32p 

demand function is concave from above. 

The function is asymptotic with respect to the P and Q 

axes. 

A power type function satisfies these criteria 

(5) Qd = "o p"l E "2 N"3 V "4 1"5 u 

Two notable features of this model .care: 

1. Elasticities with respect to price, income and other 

explanatory variables are constant, that is: 
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(6) = 

av 
~ 
ar 

aQd • 
aN 

2. The function generates a hyperbola which has a first 

derivative with respect to price which is negative. 

(7) --= ap 

(since ci 
1 

< 0 and P, E, N, V, I, > 0) 

and a second partial derivative with respect to price 

which is positive. 

In its present form, equation (5) is not linear and cannot be 

estimated using ordinary least squares regression. The equation is 

intrinsically linear; however, and can become linear by performing a log 

transformation on both sides of the equation 

(9) ln Qd = ln ci
0 

+a1 ln P + °2 ln E + a 3 ln N + a 4 ln V + 

a 5 ln I + ln u 

Equation (9) is clearly linear in the natural logarithms (base e) of the 

variables since the parameters C°i) are constants. This equation can be fit 

using ordinary least squares regression. The function that is generated 

will be asymptotic to both axes in all planes. This occurs because zero 

cannot be represented on the logarithimic scale. (Note that as P + 0, 
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Q + + oo; conversely as Q + 0, P + + oo ). Thus, this functional form 

fulfills the theoretical constructs established in Chapter II. Parameters 

of equation (9) were estimated via ordinary least squares (OI.S). The usual 

OLS assumptions (Draper and Smith, 1966, p. 86) were made with·respect 

to the logarithmic model. 

The fitted equation for the log-linear model was 

(10) ln Q = 3. 20 - . 92 ln P** + • 29 ln E* + • 33 ln N + 
d 

(.05) (.16) (.33) 

.14 ln V - .14 ln I 

(.15) (. 22) 

F = 61.93** 

**Significant at . 01 level 
*Significant at . 10 level 

n = 150 

(standard errors are in parentheses) 

Price and evaporation were significant at the • 01 and .10 level 

respectively. Income, value of residence, and persons per household were 

nonsignificant at the .1 O level. The coefficient of determination for the log

linear model was • 68, compared with .15 for the linear model. The 

improvement in the coefficient of determination by changing from the linear 

to the log-linear model provides strong empirical support for the theoretical 

model in Chapter II which indicated that the demand function was hyperbolic 

in the price-quantity plane. 

The price elasticity for rural residential water use was a constant 

(-. 92). This indicates a price elasticity near unity. Hence, a one percent 

increase in price would generate a • 92 percent decrease in quantity demanded. 

A comparison of this elasticity with those in Table 1 (Appendix A), indicates 

that it is larger than estimates from most other studies. This study 
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involved price data which exhibited a higher mean and standard deviation 

than most previous studies; thus the price elasticity should be relatively 

high. The finding supports the contention that the demand for water is 

relatively elastic even in the higher price ranges. Hence, price does have 

an effect on water consumption and can be used as an effective water manage

ment tool. 

The income elasticity for rural residential water use (-.14) was not 

significantly different from zero at the .10 level. A comparison of this 

elasticity with those in Table 1 (Appendix A) indicates that it is substantially 

lower than incorre elasticities found in previous studies. Since income data 

used in this study were collected from the same source as many previous 

studies (i.e., the Population Census), the zero income elasticity seems to 

indicate that rural residents react differently than do their urban counter

parts. This difference may be due to the lower average income with smaller 

variance in rural areas. The lower mean income decreases the purchase 

and use of water-complementary appliances in rural areas. Rosenstiel (1970) 

found that rural residences use little water for non-essential uses such as 

lawn watering, leakages, and 'waste'. The income elasticity for rural 

residential water use would probably be low since these non-essential uses 

have the greatest affect on the income elasticity. 

The income elasticity from the preceding model cannot be used 

with much confidence since its sign is not as expected and its standard error 

(. 22) is very high. However, the efficiency of the estimate can be improved 

by eliminating other variables and estimating the model 

(11) Qd = <>o p "1 I "2 u 

which can be transformed by taking the natural log of each side into 

(12) ln Qd = ln a0 - a 1 ln P + a 2 ln I + ln u 

which can be fitted using OLS as 
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(13) ln Qd = 4.15 - . 92 p** + .18 r* 

(. 05) (.13) 

2 
R = .67 F = 151. 23** 

**Significant at • 01 level 
*Significant at • 1 O level 

(standard errors are in parentheses) 

The income elasticity (.18) has the expected sign and is a more efficient 

estimate. A one percent increase in income will result in a .18 percent 

increase in the quantity of water demanded. 

An examination of the coefficient of determination value contained 

in Table5 (Appendix A) indicated that after price entered the model, the 

amount of variation explained by additional variables increased ve:ry little. 

For this reason, income, value of residence, evaporation, and persons per 

household were deleted from the model. Thus, the final 

function was 

ct 
(14) Qd = ct O P 1 u 

which was transformed to 

(15)) ln Qd = ln ct 0 - ct 1 ln P + ln u 

and fitted bf 
I 

(T6) ln Qd = 4. 51 - . 92 ln p** 

(. 05) 

2 
R = .67 F = 298. 39** 

**Significant at • 01 level 
(standard error in parentheses) 

demand 

This relationship between quantity and price is illustrated in Figure 8. 

By comparing this model with the preceding log-linear models, it can be 

seen that the price elasticity has not changed significantly. This indicates 

that price is nearly orthogonal (uncorrelated) with the other variables in the model. 

40 



a, 

§ ..... 
el c, 
0 
0 
0 
..... 
k 
Q) 

"' "' k 
ol 

:::I 
0 
A 

0 
0 

0 

"" 

0 
0 

0 
0 

"' ..... 

0 
0 

00 

0 
0 

.; 

~ -l-_:::.....::......:::~·::;;::=:====~:=;::::::==~·::::::==~----===-~ 
0 

0.00 20.00 40.00 

Gallons per Year 

60.00 

x 10
4 

80.00 

Fig. 8. --Demand function for water, 150 Kentucky 
water districts, 1972. 

41 



Data Correspondence 

Since multicollinearity probably was not inflating standard errors 

of regression coefficients, the non-significance of some explanatory 

variables may be due to data correspondence problems. Data obtained from 

the Census were aggregated on a county level. However, water districts 

seldom covered an entire county, and sometimes crossed county lines. To 

resolve this correspondence problem, census data were recollected at the 

enumeration district level. With the census data, enumeration district data 

were then reaggregated to obtain a completely accurate correspondence of 

the census data for a few of the water districts. A list was made of those 

water districts which have boundaries that crossed county lines, and those 

which occupied less than one-fourth of the area in a county. From this list 

a sample of twelve water districts was randomly drawn. 

The following t test was used: 

t ~x 2 
1 

X1 - X2 

n ( n-1) 

to test the difference two means for income and value of residence where: 

= data for n water districts from county census data, 
and 

= data for n water districts from enumeration census 
districts. 

The null hypothesis was: 

A comparison of nine water districts for income and eight water 

districts for value of residence was tested from the original sample of 

twelve districts (Tables 6 and 7, Appendix A). The reason for the deletion 

of some of the sampled districts from the t test analysis was data collection 
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problems. Maps on the boundaries of all twelve districts were unavailable 

and enumeration data for some of the districts were not in the file. 

The results obtained from the t tests illustrated that the differences 

between the means for county data and enumeration district data for income 

and value of residence were not significantly different from zero. Hence, 

county Census data used in the analysis appear to adequately represent 

Census data for the individual water districts, and the nonsignificance of the 

demand shifters cannot be attributed to a correspondence problem. There is 

strong empirical support for the contention that price is the only important 

explanatory variable affecting water use in rural Kentucky water districts. 
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CHAPTER IV 

A SIMULATION MODEL 

The impact of pricing on the consumption of water has been 

discussed in previous chapters. The discussion has focused on how pricing 

can be used to allocate water in Kentucky but the influence of pricing on 

reservoir size has not been discussed. In this section, a pricing framework 

which could be used to allocate water in Kentucky is proposed. 

Increasing Block Rate Structure 

Figure 9 depicts a long-run marginal cost pricing model. If the 

marginal cost of providing water is increasing, consumers who use more 

water on the average are imposing greater costs on consumers who use 

less than the average amount of water. Thus, consumers who use 120 

gallons/day are imposing an extra cost of (C1 - c2) for the extra 20 

gallons/day/consumer. To achieve efficiency, the consumer who demands 

large quantities of water should be charged a price equal to the marginal 

cost (C1) for the extra 20 gallons/day. 

In order to cover total costs, the revenue must equal ~ Ci Qi where 

~ is the quantity of water and Ci is the cost of producing that quantity of 

water in the ith segment of the production function. To recover total costs, 

a price should be set at P 2 where the shaded areas A and B are equal. A 

second price should be set at P1 where the areas of the shaded parts R and 

Sare equal. These two price levels would ensure an efficient pricing rate 

and cover total costs. 

As illustrated in the theoretical section (Chapter II ), resources 

are optimally allocated when price is set equal to marginal cost. This 
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Source: (Grima, 1972, p. 177). 

Fig. 9. --Long-run marginal cost pricing. 
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condition is satisfied when the highest price in the pricing structure is set 

equal to the long-run marginal cost. This type of rate structure should be 

preferred to the average cost pricing method because it allows consumers 

to purchase a reasonable quantity of water at a low price. Users demanding 

large quantities of water have the option to purchase more water at a higher 

price. Thus, water utility managers can offer small quantities of water to 

all consumers at low prices, and can sell water to those who demand more 

at a price that reflects the cost of production, 

Grima (1970, p, 178) lists other advantages of this increasing block 

rate schedule as: 

1. "This schedule is simple to administer; 

2. It makes possible the recovery of expenditures through 
water revenues; 

3. It approximately equates marginal price with the long
run marginal costs, at the same time the medium or 
low price block would reflect the short-run marginal 
cost; 

4. It would make frequent changes of price unnecessary; 

5, It would serve the same purpose as summer charges; 
if consumers pay a higher price for water demanded 
during peak periods the demand on the maximum day 
would decrease in general; 

6. This schedule takes into account the fact that the use 
of high quality water by individuals for essential 
purposes is beneficial to society as a whole and should 
therefore be supplied free or at low cost." 

Peak Load Rate Structure 

The pricing schedule suggested above could be used to reduce peak 

loads. The rate structure for this marginal cost pricing schedule would 

consist of three rates. The first rate (a commodity rate) would be set very 

low and would cover the costs of providing water at low water consumption, 
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The second rate would vary with the short-run marginal cost of supply and 

would affect those consumers who contribute moderately to peak demand. 

The third rate would be in effect for those consumers who contribute 

substantially to peak demand and would be set where demand equals the 

long-run marginal cost. This type of pricing schedule allows a cheap water 

rate to cover basic costs, a moderate rate to utilize capacity that would 

otherwise remain idle, and a high rate to influence some consumers to 

reallocate use from peak to off-peak periods. This type of pricing structure 

can be used to cum both daily and seasonal peaks without changing the block 

structures. 

Figure 10 depicts a theoretical model illustrating the use ofan 

increasing block pricing structure for pricing water during peak demands. 

At peak demand, the price of water (Pp).is set at the intersection between 

the demand function (Dp), the supply function (SMC) and the long-run marginal 

cost function (LMC). During the off-peak period, price (P0 ) would be set 

where the demand function (D0 ) and the short-run marginal cost function 

(SMC) intersect. 

Kentucky Pricing Structure Model 

Figure 11 is an illustration of a proposed marginal cost pricing 

model for rural water systems in Kentucky. In the model, n1 represents 

the demand function for municipal water use and SMC2 is the supply function. 

As illustrated in the theoretical model in Chapter II , the munici-

pality sells OQ2 units of water to its customers at price P3• The excess 

capacity remaining after the municipal needs are met (OQ5 - OQ2), is sold 

to the rural water district at price P 4• D2 is a composite demand function 

because it represents the demand for both municipal plus rural residential 

water use. This water system is not operating at its most efficient point 

because the highest price (P 4) does not equal the long-run marginal cost 
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Fig. 11. --Kentucky marginal cost pricing model. 
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function (LMC), Since the price for peak water use is set below the most 

efficient price; the municipality operates a larger water reservoir than is 

necessary to supply the needs of both municipal and rural water users. 

To solve the problem of •over-sizing' the water reservoir, the 

municipality should build the size reservoir (SMC1) which would reach 

capacity where the composite demand function (D2) intersects the long-run 

marginal cost function (LMC). By building a smaller reservoir, the 

municipality is able to lower the price of water in the first block to P1 (the 

commodity charge). At price P1 , both municipal customers and the rural 

water district would be able to purchase OQ1 units of water. The next price 

block could be set at the intersection of SMC1 and o1 or at some inter

mediate point up to capacity (OQ4). This price block ensures the use of 

excess capacity which would otherwise remain idle at a price which covers 

the short-run marginal cost (SMC1). The highest price (P5, the capacity 

charge) would be set at a price which equates o2 (the composite demand 

function) with the long-run marginal cost function (LMC) and the supply 

function (SMC1). 

BY using this pricing structure, a municipality is able to select the 

optimal size reservoir (eliminating costly over-sizing), It ensures that the 

municipality is operating efficiently by charging the customer a price that 

covers the marginal costs of producing the water he purchases. The 

municipality is able to lower peak load consumption by setting the highest 

block rate equal to the long-run marginal cost of production which reduces 

the amount of excess capacity needed and permits the building of a smaller 

reservoir. In turn, the smaller reservoir lowers the cost per unit of water 

which increases consumer surplus. 

Kentucky Water Simulation Model 

Estimates of demand parameters developed in this study were used 

in an engineering simulation model to illustrate the 
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effect that different price levels have on required reservoir capacity. The 

demand function provides an important contribution to the accuracy of the 

simulation model. Without the demand function, engineers can only estimate 

water withdrawal from a reservoir. Since water use is a function of the 

price of water, these estimates may be subject to a substantial error. The 

demand function also increases the possible applications of the simulation 

model by linking the demand side (which has traditionally been considered 

fixed) with the supply side of water management problems. 

In the simulation analysis the following assumptions were made: 

1. The drainage basin for the reservoir was 4 square miles; 

2. The water district consisted of 4, 000 households; 

3. There were 2. 8 persons per household; 

4. The minimum low flow rate (evaporation, seepage, etc.) 
was 3. 4 inches per year. 

The outflow of water from the reservoir was equal to the demand 

for water (Qd = 90. 92P -. 92 x 4000) plus the low flow rate. To increase 

the accuracy of the simulation analysis, the demand function was adjusted 

for monthly differences in demand. This was accomplished by using data 

obtained by Dowell (1967) on the percentage of annual distribution of water 

demand for Lexington, Kentucky. The annual quantity of water demanded was 

allocated monthly on the basis of the percentages of monthly demand con

tained in Table 5. 

Inflows of water into the reservoir were simulated based on the 

Thomas-Fiering Normal Model (Maass et al., 1962). The equation for the 

model was 

(20) Xi E 
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Month 

January 

February 

March 

April 

May 

June 

TABLE 5 

ANNUAL DISTRIBUTION OF WATER DEMAND 
FOR LEXINGTON, KENTUCKY, 1966 

Percent Month 

7.1 July 

7.3 August 

7.9 September 

7.7 October 

8. 0 November 

10. 0 December 

Source: (Dowell, 1967). 
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9.9 

9.5 

9.5 

8.1 

7.3 

7.6 



where 

Xt 

Xi 
rt 

st 

£ 

t 

= 

= 

= 

= 

= 

= 

monthly streamflow in month t, 

mean monthly streamflow in month t, 

correlation coefficient between flows in month t 
and t-1, 

standard deviation of monthly flow in month t, 

a standard normally distributed random deviate, and 

time (monthly), 

The model states that the flow in month t depends upon the flow in 

the previous month plus a random component. All of the parameters in the 

equation were estimated using 31 years of historical data from a drainage 

basin in Kentucky. From the equation 50-year simulated runs of flow data 

were generated. Fifty years was taken as the design life of the reservoir. 

The inflow and outflow equations were then incorporated in the 

following equation 

where 

st = reservoir storage at the end of the month t, 

xt = inflow during month t, 

Dt = outflow during month t, and 

t = time (month), 

The model states that the amount of water in storage at the end of the month 

is equal to the amount of water in storage at the beginning of the month plus 

the difference in the inflow and outflow during the month. 

Reservoir storage required to meet the monthly demand (Dt) for all 

months during a 50-year period was determined by initially assuming a reservoir 

capacity. This reservoir was assumed to be initially full, Equation (21) 

was applied month by month to the reservoir for a 50-year period based on 

the demand model and inflows generated by equation (20). If the value of 
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St became negative at any time, the assumed reservoir capacity was 

increased and the process repeated. The final reservoir capacity was 

the minimum capacity that prevented St from becoming negative during the 

50-year period. 

Since each 50-year simulated streamflow record generated by equation 

(20) represents only one of an infinite number of possible streamflow records, 

the reservoir capacity determined by the above procedure is a random variable. 

The resulting uncertainty in reservoir capacity was evaluated by repeating the 

entire process 100 times. This produced 100 estimates for the required 

reservoir capacity. The capacity that met the demand requirement for the 

entire 50-year period 99 percent of the time was selected as the final 

estimated reservoir capacity. This capacity was determined by fitting the 

Extreme Value distribution Type I for maximums to the estimated reservoir 

capacities and then determining from this distribution the capacity that was 

adequate on 99 percent of the cases. Three different price levels for the 

demand function were used in the simulation analysis. The results of the 

simulation analysis are shown in Table 6. The results provide empirical 

support for the theory presented in the previous chapters. An increase in the 

price of water does affect the quantity of water demanded. This, in turn, 

affects the storage requirement. Although the price and quantity of water 

changed by a factor of 4 from$. 50 to $2. 00 and 169, 750 gallons to 47, 750 

gallons respectively, the storage requirement decreased by a factor of 2. 9 

from 2, 773 acre feet to 960 acre feet or by about two-thirds as much. At 

the higher price range, price and quantity changed by a factor of 2, from 

$2. 00 to $4. 00 and 47, 750 gallons to 25, 325 gallons respectively, while the 

storage requirement decreased by a factor of 1. 3 from 960 acre feet to 747 

acre feet. This finding seems to indicate that a change in price will create 

a slightly less than proportionate change in storage requirement. 

Hence, the theoretical relationship between price and reservoir 

size discussed earlier is validated (see Figure 11). It was illustrated 
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in Chapter II that the demand function for rural residential water is a 

demand for excess capacity, sine e the municipal water districts sell excess 

capacity to the rural water districts. Figure 12 depicts the demand function 

for rural residential water use. Assume that a rural water district is paying 

$2. 00 per thousand gallons of water and purchases 47, 750 gallons per 

household annually. If the water utility increases the capacity price to $4. 00, 

it will create a decrease in capacity water use from 47, 750 gallons to 25, 325 

gallons or by 22, 424 gallons per household annually. 

In Figure 11 it was shown that reservoir size was directly related 

to the quantity of excess capacity demanded. The simulation model illus

trated that a decrease in the quantity of water demanded by 22, 425 gallons 

would result in a decrease in capacity requirement from 960 acre feet to 

747 acre feet or by 213 acre feet. Figure 13 illustrates the effect of a price 

change for excess capacity on reservoir size using the pricing model depicted 

in Figure 11. Assume that the municipal water utility was operating a 

reservoir at SMC2• With this size reservoir, the municipality was selling 

47, 750 gallons per household of excess capacity to the rural water district 

at $2. 00 per thousand gallons. If the municipality raises the capacity price 

for water to $4. 00 per thousand gallons there will be a decrease in capacity 

demand by 22,425 gallons per household. This decrease in capacity demand 

by 22,425 gallons per household will result in a decrease in the reservoir 

capacity necessary to meet the needs of a community of a 4, 000 households 

by 213 acre feet as shown by SMC1. 
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TABLE 6 

SIMULATION RESULTS 

Price 
Quantity Demanded 

storage 
Quantity Demanded 

$/1, 000 gallon 
gallon/year/ 

Acre Feet 
gallon/person/ 

household day 

• 50 169, 750 2,773 166 

2.00 47,750 960 47 

4.00 25,325 747 25 
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Price 

$4.00 

$2.00 

$4.00 

I 
I 
I 
I 
I 

------+-----
' I I 
I 
I 
I 

25. 3 22. 4 47. 7 

Demand 

Quantity in Thousands of Gallons 

Fig. 12. --Excess capacity demand function. 

c 

$2.00 ------ ----

'--v---J 
747 213 960 

Quantity in Acre Feet 

Fig. 13. --Effect of price change on reservoir size. 
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CHAPTER V 

CONCLUSIONS 

This study has proposed that demand management through pricing 

policies can be used in conjunction with supply management to solve water 

supply problems. It has been shown that economic principles can be used to 

increase the efficiency of water distribution. Principles outlined in this 

study can be implemented by utility managers and regulatory agencies. 

Historically, economics has assumed a subordinate role to engineering and 

political considerations in water policy. This under-emphasis of pricing 

policies resulted from the availability of abundant, low cost water supplies, 

However, today the factors that permitted the supply of low cost water 

no longer exist. Thus, water has been transformed from a free to an economic 

good and society must consider other approaches to the management of water 

resources. 

In Kentucky, surface water is the most important source of resi

dential water. Since many communities do not have an adequate source of 

water; reservoirs are built to meet water requirements. Water supply 

reservoirs are generally built large enough to supply a community's needs 

at all times, Since peak water use is greater than average water use, 

communities generally build larger reservoirs than necessary to supply basic 

needs. This study used economic principles to analyze this supply problem. 

Chapter III illustrated the economic principles that apply to rural 

residential water use. In Kentucky, municipalities build and operate water 

supply reservoirs and rural water districts purchase water from the 

municipalities. Municipalities build excess capacity into their reservoirs as 

a 'safety-valve•. This excess capacity is sold to the rural water districts at 
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a price that covers the marginal costs of producing the water. From the 

theoretical model, a hyperbolic demand function was theorized. The 

mathematical form of this function used quantity of water as a function of 

price, income, value of residence, evaporation, and persons per residence. 

This function was estimated using ordinary least squares regression. A 

single equation model, instead of a more complicated simultaneous equation 

system could be used because the supply function was perfectly inelastic 

dQd p 
( dP • Qd = 0). A linear form of the model was initially estimated. A 

log-linear model was found to be a better representation of tre demand 

function. Price was the only independent variable which was significant and 

had an elasticity of (-. 92). 

As an application of pricing to demand management, the estimated 

regression equation was used in a simulation analysis. The simulation was 

used to determine the reservoir capacity necessary to supply the needs of 

4, 000 households given three different price levels for water. Reservoir 

size was determined by simulating reservoir size as a function of outflow 

as estimated from the demand function plus an assumed low flow rate and 

inflow from the Thomas-Fiering Model. This technique illustrated that price 

does affect the quantity of water demanded which in turn effects reservoir 

capacity requirements. 

Conclusions and Policy Considerations 

Based on the review of literature on the demand for water and the 

theoretical and empirical analysis in this study, the following conclusions 

and policy recommendations are drawn: 

1. Based on data collected from rural water districts in 

Kentucky, the demand for rural residential water can 

be depicted as: Qd = 90. 92 p-· 92 • 
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2. The demand for residential water, as in other 

economic goods, is a dee reasing function of price. 

It was illustrated in the theoretical section (Chapter 

II) that the demand function for residential water is 

downward sloping and the empirical analysis (Chapter 

III) of the mathematical form supports this conclusion. 

Thus, increases in the price of water result in 

decreases in the quantity demanded. This finding 

contests the viewpoint that "water is different" and 

supports the use of demand analysis in water manage

ment. 

3. The demand function for residential water use is 

hyperbolic. The model depicting the three different 

demand functions for different water uses (Chapter II) 

illustrated that the demand function would be curvi

linear. The statistical tests (Chapter III) empirically 

verified this conclusion (the R2 for the log-linear model 

was . 67 compared with an R2 = .15 for the linear 

model). This finding indicates that pricing strategies 

will have the greatest effect on water consumption in 

the lower and middle price ranges. 

4. The analysis reveals that the elasticity of demand for 

residential water with respect to price is not as 

inelastic as has been believed. The reason for the 

inelasticity of demand in many past studies can probably 

be attributed to the inability of many investigators to 

obtain data in the higher price ranges. The evidence 

obtained on price data in this study indicates that the 

price elasticity for residential water is near unity 
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(-. 92), This implies that price can be used as an 

effective tool for controlling the demand for water, 

5, Demand shifters (income, value of residence, 

evaporation, and persons per residence do not appear 

to have a significant impact on rural residential water 

use. None of these variables were significant at a = • 05. 

The reason for the nonsignificance of these variables 

could not be attributed to multicollinearity or data 

correspondence problems as illustrated by the t tests , 

A possible cause of the inflated standard errors on the 

coefficients for these variables is due to the lack of 

variance in the data. Variation in these variables was 

lost when the data from individual households were 

aggregated and averaged over a county or enumeration 

district to obtain the Census figures. 

6, Policy variables relating to demand management should 

be taken into consideration when forecasting and 

designing capacity for residential water systems. 

Simulation analysis is an excellent method of modeling 

demand and hydologic parameters for use in making 

water management decisions. Simulation analysis was 

used in this study to illustrate how different price levels 

affect required reservoir storage capacity (Chapter IV}

Water utility managers can use simulation models to 

'size' reservoirs and predict the effect that different 

pricing schemes would have on water use and capacity 

requirements. 

7, Average cost pricing should be replaced with marginal 

cost pricing. The primary goal of water resources 
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managers should be to allocate water efficiently. The 

pricing model (Chapter II) illustrated that marginal 

cost pricing ensures economic efficiency in the water 

utility industry. Society obtains maximum benefits 

per costs and the optimum allocation of resources when 

goods and services are efficiently allocated. When water 

is not efficiently allocated, consumers who purchase 

less water are subsidizing those who purchase more 

(Chapter IV). This leads to overinvestment in water 

services and underinvestment in other goods and services. 

8. Decreasing block rate schedules should be replaced with 

increasing block rate schedules where the average cost of 

supplying water is increasing. A three tier pricing 

schedule is recommended where the lowest rate (the 

commodity rate) allows consumers to purchase a small 

amount of water at a low price. The next rate would be 

set where short-run marginal costs are increasing to 

ensure the use of capacity that would otherwise remain 

idle, and the highest rate (the peak load rate) should be 

set where long-run and short-run marginal costs inter

sect (Chapter IV). It was illustrated that this is an 

efficient pricing structure which provides all consumers 

with a reasonable amount of water at a low price while 

providing additional water to consumers at a rate which 

covers costs, This system is easy to administer and 

the rates work effectively for either peak or off-peak 

pricing situations. 

9. The system of charges selected should cover the full 

costs of water services. When water systems are 

expanded or modified, water rates should be changed 
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to reflect changes in costs. Some people have argued 

that since water is a necessity, it should be offered 

to consumers at very low prices because user charges 

and prices are regressive (i.e. , water services 

represent a larger portion of a poor than rich family's 

income) and thus discriminate against low income users. 

The argument is that water services, which are usually 

provided in the public sector, should be financed out of 

tax revenues rather than through a pricing system. On 

the basis of the theory presented (Chapters Il and IV) 

the above statements are untenable. It is not clear that 

marginal cost (cost-based) pricing increases the burden 

on the poor. The pricing models depicted in Chapter IV 

illustrated that when prices do not cover the full costs 

of supplying water, those who consume less water 

subsidize those who consume more. The less affluent 

who have small lawns and few water-complementary 

appliances, make up the difference in revenue for the 

more affluent, higher water using families. If income 

distribution is the objective, a more appropriate device 

might be the tax structure or welfare payments rather 

than tampering with economic efficiency. 

Recommendations for Further Studies 

Recommendations for further analysis in water demand and manage

ment are: 

1. Demand functions for municipal water use could be 

estimated for Kentucky. Wherever possible, an 

attempt should be made to estimate separate functions 

for industrial, commercial and residential water users. 
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Separate demand functions could be fit in each 

category for summer, winter and annual water 

use when proper data can be found. 

2. A limitation to pricing analysis is the limited 

knowledge compiled on the production and cost 

functions for water utilities. An important contri

bution to the literature would be the estimation of 

these functions to empirically test the theoretical 

pricing models. 

3. The reason for the nonsignificance in the demand 

shifters may have been due to the lack of variance 

in the data resulting from the aggregating and 

averaging of the data over a district. Data on an 

individual household basis could be collected to find 

out what effect rate changes have on individual house

holds. These results could be compared with the 

number and frequency of use of water-complementary 

appliances in the home. 

4. Further simulation studies combining demand and 

hydrologic parameters can be done. An ongoing study 

in the Agricultural Engineering Department at the 

University of Kentucky is using information on demand 

parameters from this study to simulate the water in 

storage in a reservoir when the price paid for water is 

a function of the amount of water in storage. 
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APPENDIX A 



TABLE 1 

A COMPARISON OF ESTIMATED PRICE AND INCOME ELASTICITIES OF 
DEMAND FOR RESIDENTIAL WATER IN PREVIOUS STUDIES 

Investigator Year 

Metcalf 1926 

Larson and Hudson, Jr. 1951 

Hanson and Hudson, Jr. 1956 

Seidel and Baumann 1957 

Fourt 1958 

Renshaw 1958 

Milliman 1963 

Gottlieb 1963 

Wong, Jll al 1963 

Headley 1963 

Gardner and Schick 1964 

Flack 1965 

Bain,~ al 1966 

Type of Analysis 

29 Waterworks Systems 
Cross-sectional 

15 Illinois Communities 
Cross-sectional 

8 Illinois Communities 
Cross ... sectional 

American Cities 
Cross-sectional 

34 American Cities 
Cross--sectional 

36 Water Service Systems 

Speculation 

Kansas 
Cross-section~ 

Northeastern Illinois 
Cross-sectional 

s. F. - Oakland, 1950-59 
Time-series 

43 Northern Utah Water 
Systems 

Cross-sectional 

54 Western Cities 
Cross-sectional 

41 Californian Cities 
Cross-sectional 

65 

Price 
Elasticity 

-o. 65 

-0.12 to -1. 0 

-0, 39 

-0.45 

-0, 3 to -0.4 

-0. 66 to -1. 24 

0. 01 to -0. 72 

-0. 77 

-0.12 to -1. 0 

-1. 099 

Income 
Elasticity 

o. 70 

0.55 

o. 28 

0,28 to 0,58 

O. 00 to 0. 40 

cont 1d. 



TABLE 1. - - Continued 

PJ_ice Income 
Investigator Year Type of Analysis Elasticity Elasticity 

Howe and linaweaver 1967 35 Study Areas -0. 21 to -0. 23 O. 31 to 0. 37 
Cross-sectional 

Conley 1967 24 S. Califomian -1. 02 to -1. 09 
Communities 

Cross-sectional 

Turnovsky 1969 19 Massachusetts Towns -0. 05 to -0. 40 
Cross- sectional 

Grima 1970 91 Observations -0. 93 o. 56 
Cross-sectional 

Wong 1970 Chicago, 1951-1961 -0. 02 to -0. 28 0. 20 to O. 26 
Time-series 

Four Com. Sz. Grps. -0. 26 to -0. 82 O. 48 to 1. 03 
Cross-sectional 

Source, (Wong, 1972, p. 42). 
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TABLE 3 

CORRELATION COEFFICIENTS, LINEAR MODEL 

Q p v I E N 

Q 1. 0000 

p -. 81 76 1. 0000 

v -.0055 .1099 1. 0000 

I • 0487 • 0080 • 7293 1. 0000 

E • 0714 • 0270 . 3860 • 5352 1. 0000 

N • 0047 -. 0123 • 2041 .1297 -.3923 1. 0000 

TABLE 4 

MEANS, STANDARD DEVIATIONS, AND RANGES 

Mean Standard Deviation Ranges 

Q 56.39 50. 71 2.87 - 521. 48 

p 2.27 1.48 • 27 - 14.49 

v 11.68 3.05 5.00 - 18. 90 

I 6.59 1. 51 3.52 - 11. 28 

E 23.10 4.20 14. 77 - 26. 89 

N 2.87 . 29 2.3 3.4 
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TABLE 5 

SUMMARY TABLE, WG-LINEAR MODEL 

Variable 
Multiple R RSQ Simple 

B Beta 
R Square Change R 

p • 8176 • 6685 • 6685 -. 81 76 -.9235 -.8253 

E • 8229 .6772 • 0087 • 0714 • 2904 .1113 

N • 8250 • 6806 • 0034 • 0572 .3275 • 0553 

v • 8257 • 6817 • 0011 -.0055 .1351 • 0729 

I . 8262 • 6826 • 0009 • 0576 -.1351 -.0501 

(Constant) 3.1954 
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TABLE 6 

t TEST FOR INCOME DATA 

- 2 
EX

1 
= 68,867 X1 = 7,652 EX1 

= 552, 134, 895 

2 
EX2 

= 67,883 X2 = 7,543 EX2 = 524,312,423 

x1 = county data x2 = enumeration district data 

n = 9 

t = 
7,652 - 7,543 

552,134,895 ~ 
(68, 867)2 

+ 524, 312, 423 - (67 z 883)
2 

9 9 

9(9-1) 

= • 51 t. 95 = 1. 746 16 degrees of freedom 

The null hypothesis is not rejected, H0 : x1 - x2 = 0 
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TABLE 7 

t TEST ON VALUE OF RESIDENCE DATA 

LX1 = 87,786 X1 = 10,973 LX1 
2 

= 1,041,920,920 

LX2 
94,200 x2 11,775 

2 
1,142,100,000 = = LX2 = 

x1 = county data X2 = enumeration district data 

n = 8 
10,973 - 11, 775 

t = (87, 786)
2 

(94, 200)
2 

1,041,920,920 - + 1,142,100,000 -8 8 

8(8-1) 

= .568 t .95 = 1. 761 14 degrees of freedom 

The null hypothesii;; is not rejected. H
0

: x 1 
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