200 research outputs found

    Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters

    Get PDF
    RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters

    DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability

    Get PDF
    The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP II

    Comprehensive in silico functional specification of mouse retina transcripts

    Get PDF
    BACKGROUND: The retina is a well-defined portion of the central nervous system (CNS) that has been used as a model for CNS development and function studies. The full specification of transcripts in an individual tissue or cell type, like retina, can greatly aid the understanding of the control of cell differentiation and cell function. In this study, we have integrated computational bioinformatics and microarray experimental approaches to classify the tissue specificity and developmental distribution of mouse retina transcripts. RESULTS: We have classified a set of retina-specific genes using sequence-based screening integrated with computational and retina tissue-specific microarray approaches. 33,737 non-redundant sequences were identified as retina transcript clusters (RTCs) from more than 81,000 mouse retina ESTs. We estimate that about 19,000 to 20,000 genes might express in mouse retina from embryonic to adult stages. 39.1% of the RTCs are not covered by 60,770 RIKEN full-length cDNAs. Through comparison with 2 million mouse ESTs, spectra of neural, retinal, late-generated retinal, and photoreceptor -enriched RTCs have been generated. More than 70% of these RTCs have data from biological experiments confirming their tissue-specific expression pattern. The highest-grade retina-enriched pool covered almost all the known genes encoding proteins involved in photo-transduction. CONCLUSION: This study provides a comprehensive mouse retina transcript profile for further gene discovery in retina and suggests that tissue-specific transcripts contribute substantially to the whole transcriptome

    Measurement of the branching ratio of the decay Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu}

    Full text link
    From the 2002 data taking with a neutral kaon beam extracted from the CERN-SPS, the NA48/1 experiment observed 97 Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu} candidates with a background contamination of 30.8±4.230.8 \pm 4.2 events. From this sample, the BR(Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu}) is measured to be (2.17±0.32stat±0.17syst)×106(2.17 \pm 0.32_{\mathrm{stat}}\pm 0.17_{\mathrm{syst}})\times10^{-6}

    Observation of the rare decay K_S -> pi^0mu^+mu^-

    Full text link
    A search for the decay K_S -> pi^0mu^+mu^- has been made by the NA48/1 Collaboration at the CERN SPS accelerator. The data were collected during 2002 with a high-intensity K_S beam. Six events were found with a background expectation of 0.22^+0.18_-0.11 event. Using a vector matrix element and unit form factor, the measured branching ratio is B(K_S -> pi^0mu^+mu^-)=[2.9^+1.5_-1.2(stat)+/-0.2(syst)]x10^{-9}.Comment: 19 pages, 8 figures, 4 tables. To be published in Physics Letters

    First observation and branching fraction and decay parameter measurements of the weak radiative decay Xi0 --> Lambda e+e-

    Get PDF
    The weak radiative decay Xi0 --> Lambda e+e- has been detected for the first time. We find 412 candidates in the signal region, with an estimated background of 15 +/- 5 events. We determine the branching fraction B(Xi0 --> Lambda e+e-) = [7.6 +/- 0.4(stat) +/- 0.4(syst) +/- 0.2(norm)] x 10^{-6}, consistent with an internal bremsstrahlung process, and the decay asymmetry parameter alpha_{XiLambdaee} = -0.8 +/- 0.2, consistent with that of Xi0 --> Lambda gamma. The charge conjugate reaction Xi0_bar --> Lambda_bar e+e- has also been observed.Comment: 20 pages, 5 figures, 4 tables; revised: 19 pages, 4 figures, 4 tables, after reviewers' comments: 1 figure removed, 1 figure corrected, minor editorial changes; to be published in Phys. Lett.

    First observation of the KS->pi0 gamma gamma decay

    Get PDF
    Using the NA48 detector at the CERN SPS, 31 KS->pi0 gamma gamma candidates with an estimated background of 13.7 +- 3.2 events have been observed. This first observation leads to a branching ratio of BR(KS->pi0 gamma gamma) = (4.9 +- 1.6(stat) +- 0.9(syst)) x 10^-8 in agreement with Chiral Perturbation theory predictions.Comment: 10 pages, 4 figures submitted to Phys. Lett.

    Search for CP violation in K0 -> 3 pi0 decays

    Get PDF
    Using data taken during the year 2000 with the NA48 detector at the CERN SPS, a search for the CP violating decay K_S -> 3 pi0 has been performed. From a fit to the lifetime distribution of about 4.9 million reconstructed K0/K0bar -> 3 pi0 decays, the CP violating amplitude eta_000 = A(K_S -> 3 pi0)/A(K_L -> 3 pi0) has been found to be Re(eta_000) = -0.002 +- 0.011 +- 0.015 and Im(eta_000) = -0.003 +- 0.013 +- 0.017. This corresponds to an upper limit on the branching fraction of Br(K_S -> 3 pi0) < 7.4 x 10^-7 at 90% confidence level. The result is used to improve knowledge of Re(epsilon) and the CPT violating quantity Im(delta) via the Bell-Steinberger relation.Comment: 18 pages, 7 figures, submitted to Phys. Lett.

    A precision measurement of direct CP violation in the decay of neutral kaons into two pions

    Get PDF
    The direct CP violation parameter Re(epsilon'/epsilon) has been measured from the decay rates of neutral kaons into two pions using the NA48 detector at the CERN SPS. The 2001 running period was devoted to collecting additional data under varied conditions compared to earlier years (1997-99). The new data yield the result: Re(epsilon'/epsilon) = (13.7 +/- 3.1) times 10^{-4}. Combining this result with that published from the 1997, 98 and 99 data, an overall value of Re(epsilon'/epsilon) = (14.7 +/- 2.2) times 10^{-4} is obtained from the NA48 experiment.Comment: 19 pages, 5 figures, to be published in Physics Letters

    Foxf2: A Novel Locus for Anterior Segment Dysgenesis Adjacent to the Foxc1 Gene

    Get PDF
    Anterior segment dysgenesis (ASD) is characterised by an abnormal migration of neural crest cells or an aberrant differentiation of the mesenchymal cells during the formation of the eye's anterior segment. These abnormalities result in multiple tissue defects affecting the iris, cornea and drainage structures of the iridocorneal angle including the ciliary body, trabecular meshwork and Schlemm's canal. In some cases, abnormal ASD development leads to glaucoma, which is usually associated with increased intraocular pressure. Haploinsufficiency through mutation or chromosomal deletion of the human FOXC1 transcription factor gene or duplications of the 6p25 region is associated with a spectrum of ocular abnormalities including ASD. However, mapping data and phenotype analysis of human deletions suggests that an additional locus for this condition may be present in the same chromosomal region as FOXC1. DHPLC screening of ENU mutagenised mouse archival tissue revealed five novel mouse Foxf2 mutations. Re-derivation of one of these (the Foxf2W174R mouse lineage) resulted in heterozygote mice that exhibited thinning of the iris stroma, hyperplasia of the trabecular meshwork, small or absent Schlemm's canal and a reduction in the iridocorneal angle. Homozygous E18.5 mice showed absence of ciliary body projections, demonstrating a critical role for Foxf2 in the developing eye. These data provide evidence that the Foxf2 gene, separated from Foxc1 by less than 70 kb of genomic sequence (250 kb in human DNA), may explain human abnormalities in some cases of ASD where FOXC1 has been excluded genetically
    corecore