196 research outputs found

    Definition of a Novel Pathway Centered on Lysophosphatidic Acid To Recruit Monocytes during the Resolution Phase of Tissue Inflammation.

    Get PDF
    Blood-derived monocytes remove apoptotic cells and terminate inflammation in settings as diverse as atherosclerosis and Alzheimer's disease. They express high levels of the proresolving receptor ALX/FPR2, which is activated by the protein annexin A1 (ANXA1), found in high abundance in inflammatory exudates. Using primary human blood monocytes from healthy donors, we identified ANXA1 as a potent CD14+CD16- monocyte chemoattractant, acting via ALX/FPR2. Downstream signaling pathway analysis revealed the p38 MAPK-mediated activation of a calcium independent phospholipase A2 with resultant synthesis of lysophosphatidic acid (LPA) driving chemotaxis through LPA receptor 2 and actin cytoskeletal mobilization. In vivo experiments confirmed ANXA1 as an independent phospholipase A2-dependent monocyte recruiter; congruently, monocyte recruitment was significantly impaired during ongoing zymosan-induced inflammation in AnxA1-/- or alx/fpr2/3-/- mice. Using a dorsal air-pouch model, passive transfer of apoptotic neutrophils between AnxA1-/- and wild-type mice identified effete neutrophils as the primary source of soluble ANXA1 in inflammatory resolution. Together, these data elucidate a novel proresolving network centered on ANXA1 and LPA generation and identify previously unappreciated determinants of ANXA1 and ALX/FPR2 signaling in monocytes

    Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation.

    Get PDF
    Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution, and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identified annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing toward a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then overexpressed in infiltrating macrophages, AnxA1 activated FPR2/ALX receptors and the downstream AMPK signaling cascade, leading to macrophage skewing, dampening of inflammation, and regeneration of muscle fibers. Mice lacking AnxA1 in all cells or only in myeloid cells displayed a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK-null macrophages lacking AnxA1-mediated polarization. Collectively, these data identified the AnxA1/FPR2/AMPK axis as an important pathway in skeletal muscle injury regeneration

    Context Preserving Focal Probes for Exploration of Volumetric Medical Datasets

    Get PDF
    During real-time medical data exploration using volume rendering, it is often difficult to enhance a particular region of interest without losing context information. In this paper, we present a new illustrative technique for focusing on a user-driven region of interest while preserving context information. Our focal probes define a region of interest using a distance function which controls the opacity of the voxels within the probe, exploit silhouette enhancement and use non-photorealistic shading techniques to improve shape depiction.187-19

    Annexin A1 drives macrophage skewing towards a resolving phenotype to accelerate the regeneration of muscle injury through AMPK activation

    Get PDF
    Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identify Annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing towards a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then over-expressed in infiltrating macrophages, AnxA1 activates FPR2/ALX receptors and the downstream AMPK signalling cascade leading to macrophage skewing, dampening of inflammation and regeneration of muscle fibres. Mice lacking AnxA1 in all cells or in myeloid cells only display a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK null macrophages lacking AnxA1-mediated polarization. Collectively, these data identify the AnxA1/FPR2/AMPK axis as a novel pathway in skeletal muscle injury regeneration.This work was supported by CNRS, French Society of Myology and Wellcome Trust Programme Grant 086867/Z/08/Z. GJ was supported by Fondation pour la Recherche Medicale (Equipe FRM DEQ20140329495

    Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review

    Get PDF
    There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related markers

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries

    Get PDF
    Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no studies have already considered the use of the lactic acid fermentation to enhance the functional features of M. communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on murine fibroblasts, and the profile of phenol compounds was characterized. Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3 mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the esterase activities of L. plantarum. Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional food dietary supplements or pharmaceutical preparations

    Environmental factors modulating the stability and enzymatic activity of the Petrotoga mobilis Esterase (PmEst)

    Get PDF
    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required
    • …
    corecore