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The Journal of Immunology

Definition of a Novel Pathway Centered on Lysophosphatidic
Acid To Recruit Monocytes during the Resolution Phase of
Tissue Inflammation

Simon McArthur,* Thomas Gobbetti,* Dennis H. M. K€usters,†,‡

Christopher P. Reutelingsperger,†,‡ Roderick J. Flower,* and Mauro Perretti*

Blood-derived monocytes remove apoptotic cells and terminate inflammation in settings as diverse as atherosclerosis and Alz-

heimer’s disease. They express high levels of the proresolving receptor ALX/FPR2, which is activated by the protein annexin

A1 (ANXA1), found in high abundance in inflammatory exudates. Using primary human blood monocytes from healthy donors,

we identified ANXA1 as a potent CD14+CD162 monocyte chemoattractant, acting via ALX/FPR2. Downstream signaling pathway

analysis revealed the p38 MAPK-mediated activation of a calcium independent phospholipase A2 with resultant synthesis of

lysophosphatidic acid (LPA) driving chemotaxis through LPA receptor 2 and actin cytoskeletal mobilization. In vivo experiments

confirmed ANXA1 as an independent phospholipase A2–dependent monocyte recruiter; congruently, monocyte recruitment was

significantly impaired during ongoing zymosan-induced inflammation in AnxA12/2 or alx/fpr2/32/2 mice. Using a dorsal air-

pouch model, passive transfer of apoptotic neutrophils between AnxA12/2 and wild-type mice identified effete neutrophils as the

primary source of soluble ANXA1 in inflammatory resolution. Together, these data elucidate a novel proresolving network

centered on ANXA1 and LPA generation and identify previously unappreciated determinants of ANXA1 and ALX/FPR2 signaling

in monocytes. The Journal of Immunology, 2015, 195: 000–000.

C
hronic inflammation is increasingly recognized as a major
element of aetiopathogenesis, beyond more obviously
inflammatory conditions such as rheumatoid arthritis and

atherosclerosis, to include such socially and economically sig-
nificant disorders as type 2 diabetes, Alzheimer’s disease, and
cancer (1). Chronic inflammation can be characterized as a failure
of resolution, the complex, active process of inflammatory reac-
tion termination and restoration of homeostatic balance (2). Our
understanding of the cellular and molecular interactions in reso-
lution remains incomplete, but a key role is played by mononu-
clear phagocyte lineage cells (3).
One of the central functions of mononuclear phagocytes is the

control and prevention of excessive neutrophil activation. Neu-
trophils, as the first cellular responders to infection or tissue
damage, are critical for the body’s defenses, but it is essential that

their actions are tempered: excessive or prolonged neutrophil ac-
tion can be highly damaging to healthy bystander tissue, and, if

not removed, effete neutrophils can themselves enter necrosis and

further prolong inflammation (4). Thus, the phagocytic clearance

of dead and dying neutrophils by monocytes and monocyte-

derived macrophages is crucial for the progression to resolution.
Monocyte recruitment from the bloodstream to inflammatory

sites is largely driven through migration toward chemoattractants

(5). Many of these have now been identified, including comple-

ment factors and other classical chemoattractants, as well as

chemokines such as CCL2 (6), and, importantly, proteins derived

from neutrophils themselves (7). Indeed, patients with neutrophil

granule content deficiencies show reduced monocyte recruitment

during inflammation, despite normal responses to chemo-

attractants in vitro (8). One important neutrophil-derived protein is

cathelicidin (LL-37 in humans, CRAMP in mice), recently shown

to act through the G protein–coupled receptor ALX/FPR2 (9).

ALX/FPR2 is a high-affinity receptor for the proresolving bioac-

tive lipid mediator lipoxin A4 (LXA4) (10) and the low-affinity

receptor for formylated peptides (11).
The role of ALX/FPR2 in monocyte recruitment is intriguing, as

this receptor is highly promiscuous and capable of transducing

signals for both proinflammatory ligands, such as LL-37, serum

amyloid A, and b-amyloid (Ab1–42), and for potent proresolution

agents including LXA4 and the protein annexin A1 (ANXA1).

ANXA1 in particular is not only highly abundant within neu-

trophils, comprising ∼2–4% of total cellular protein (12), but is

a major proresolving agent, inducing both neutrophil apoptosis

and their phagocytic clearance by macrophages (13, 14).
Given that ANXA1 shares with LXA4 a proresolving signature

in human neutrophils and monocytes (15), and that LXA4 can

promote nonphlogistic migration of monocytes (16), we employed

an integrated in vitro and whole animal approach to investigate the

actions of this protein upon monocyte recruitment and chemotaxis,
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defining a novel pathway operative during the second phase of in-
flammation, conceivably required for adequate resolution.

Materials and Methods
Animals

All procedures were performed under the United Kingdom Animals (Sci-
entific Procedures) Act, 1986. Male C57BL/6 mice, male alx/fpr2/3GFP/GFP

mice (hereafter referred to as alx/fpr2/32/2) bearing a knocked-in GFP
(17), and male anxA12/2 mice (18) aged 6–8 wk were used for in vivo ex-
periments. Both transgenic strains were fully backcrossed onto a C57BL/6
genetic background.

Murine in vivo experiments

Zymosan-induced peritonitis. Peritonitis was induced by i.p. injection of
a suspension of 0.5 mg/100 ml zymosan particles (Sigma-Aldrich) in 0.9%
NaCl and analyzed, as reported previously (19).

Polymicrobial sepsis. Sepsis induced by cecal ligation and puncture was
performed in 8-mo-old male C57BL/6 or alx/fpr2/32/2 mice, utilizing our
published protocol (19). Sham-operated mice underwent the same proce-
dure, but without cecal ligation and puncture. Experiments were termi-
nated 24 h postsurgery for ethical reasons.

Dorsal air pouch. Subcutaneous dorsal air pouches were established and
analyzed, as described previously (17).

Cell culture

Primary human monocytes were extracted from whole blood of healthy
donors using the RosetteSep negative selection assay (Stem Cell Tech-
nologies), according to the manufacturer’s protocols. Cells were resus-
pended in RPMI 1640 medium, supplemented with 0.1% BSA, 100 U/ml
penicillin, and 100 mg/ml streptomycin for all assays. Extractions were
performed immediately prior to use in experiments.

Chemotaxis assays

Boyden chamber assay. Monocyte chemotaxis was assessed in a 96-well
plate format classical Boyden chamber assay (Neuroprobe, Gaithersburg,
MD) consisting of a polycarbonate membrane containing 5-mm–diameter
pores above a 30 ml chemoattractant chamber, with an incubation period of
90 min, as described previously (20). The human recombinant ANXA1
(hrANXA1) gradient established in this assay was confirmed as stable for
at least 90 min in the absence of cells (Supplemental Fig. 1).

Three-dimensional chemotaxis assay. Monocyte chemotaxis in three
dimensions was assessed using an iBidi microslide3D microfluidics system
(iBidi, Munich, Germany), according to the manufacturer’s instructions.
Briefly, monocytes were resuspended in 50% Matrigel (BD Biosciences) in
RPMI 1640 supplemented with 1 mM CaCl2 and 0.5 mM MgCl2 in
a central channel. Chemoattractant was added to media on one side of the
channel only. Time-lapse video recording using a Nikon TE300 micro-
scope (Nikon Instruments UK, Kingston-upon-Thames, U.K.) fitted with
a Retiga Xi CCD camera (QImaging, Surrey, BC, Canada) under original
magnification 320 was used to track cell migration in a humidified
chamber under 5% CO2, 95% air, images being captured every 20 s for 30
min prior to the addition of chemoattractant, followed by continued re-
cording every 20 s for 30 min after the addition of hrANXA1 to one side of
the channel. Migration was then quantified using the Chemotaxis 3D
plugin to ImageJ 1.47 provided by iBidi, with movement of a minimum of
40 cells being assessed under each condition per donor.

Flow cytometry

Isolated human monocytes were labeled with allophycocyanin-conjugated
mouse monoclonal anti-CD14 and PE-conjugated mouse monoclonal anti-
CD16 or isotype controls (all from eBioscience, Hatfield, U.K.), according
to manufacturer’s protocols. Murine blood, peritoneal lavage, or air-pouch
lavage cells were labeled with PE-conjugated rat monoclonal anti-Ly6G
or anti-Gr1, PE-Cy5–conjugated rat monoclonal anti-CD115, and
allophycocyanin-conjugated rat monoclonal anti-F4/80, or isotype controls
(all from eBioscience), all according to manufacturer’s protocols. In all
cases, 20,000 events were acquired using a FACSCalibur flow cytometer
(BD Biosciences) and analyzed using FlowJo analysis software (Version
9.6.3; Tree Star, Stanford, CA). The human and murine gating strategies
for cellular analysis are shown in Supplemental Fig. 2A and 2B, respec-
tively. Actin polymerization was assessed through binding of AF488-
labeled phalloidin (Invitrogen), according to manufacturer’s protocols.

Immunofluorescence and confocal microscopy

Primary human monocytes were plated in six channel microslides (m-Slide
VI 0.4; iBidi), with hrANXA1 being added to one reservoir only. Cells
were fixed with 2% formaldehyde in 0.1 M PBS prior to immunostaining
with mouse monoclonal anti-FPR2 (Genovac, Freiburg, Germany) or
rabbit polyclonal anti-iPLA2b (Cayman Chemical, Ann Arbor, MI), fol-
lowed by secondary labeling with either AF488-conjugated goat anti-
mouse IgG or AF594-conjugated goat anti-rabbit (both Invitrogen). Cells
were then further labeled with 5 U/ml AF594- or AF488-conjugated
phalloidin (Invitrogen) counterstained with DAPI and examined using a
TCS SP5 confocal laser-scanning microscope (Leica Microsystems) fitted
with 405, 488, and 594 nm lasers, and attached to a Leica DMI6000CS
inverted microscope fitted with a 633 oil immersion objective lens (NA,
1.4 mm; working distance, 0.17 mm). Images were captured with Leica
LAS AF 2.6.1 software and analyzed by using ImageJ software.

Analysis of Akt, ERK1/2, and p38 MAPK activity

Monocytes, maintained in suspension, were incubated at room temperature
for 1, 2, 3, 5, 10, or 15 min with 300 pM hrANXA1 before being transferred
immediately onto ice. Expression of phospho- and total Akt, ERK1/2, and
p38 MAPK (all Abs from Cell Signaling Technology, Danvers, MA) was
assessed by Western blot, as described previously (15). Protein expression
was detected by ECL using a FluorChem E imaging system (Pro-
teinsimple, Santa Clara, CA), with quantification being performed using
ImageJ.

Phospholipase activity assays

Monocyte cytoplasmic phospholipase activity was assessed using a com-
mercial enzyme activity kit (Cayman Chemical), according to the manu-
facturer’s protocol.

ELISA

Commercial murine cytokine ELISAs were performed according to the
manufacturer’s protocols (TNF-a, IL-1b, IL-10, MCP-1, and RANTES
from eBioscience; KC from R&D Systems). Murine ANXA1 was mea-
sured using an in-house ELISA reported previously (15). Human monocyte
lysophosphatidic acid (LPA) content was determined using a commercial
assay kit (Echelon Biosciences, Salt Lake City, UT), according to the
manufacturer’s instructions.

RT-PCR and real-time RT-PCR

Total RNA was prepared from primary human monocytes using TRIzol
reagent (Life Technologies, Paisley, U.K.) and then reverse transcribed with
Superscript III reverse transcriptase (Life Technologies), according to the
manufacturer’s protocols. Resultant cDNA was then analyzed by PCR
using primer pairs specific for human LPA receptors 1–6 (21), alongside
GAPDH as a positive control. Real-time PCR was performed in duplicate,
using the Quantitect primer system (primer sets: LPA1 QT00021469, LPA2

QT01851318, LPA4 QT00235697, LPA5 QT00209503, and LPA6

QT01530648; all from Qiagen, Manchester, U.K.) and Power SYBR Green
PCR Master Mix (Applied Biosystems, Warrington, U.K.). Reactions were
performed in 384-well format using the ABI Prism 7900HT Sequence
Detection System. The PCR conditions consisted of 95˚C, 15 min [95˚C
15 s 2 55˚C 30 s 2 72˚C 30 s] 3 40, with a dissociation step [95˚C 15 s/
60˚C 15 s/95˚C 15 s] included after the PCR to confirm the absence of
nonspecific products. Data were acquired and analyzed with SDS 2.3
(Applied Biosystems); fold change was calculated as 22DDCt.

LPA2 small interfering RNA

Primary human monocytes were transfected with one of three different
commercial small interfering RNA (siRNA) sequences designed to target
LPA2 or an Allstars negative control siRNA sequence using Hiperfect
transfection reagent (final concentration 2 nM; all from Qiagen, Hilden,
Germany), alongside untransfected cells or cells treated with Hiperfect
only. After 48 h, cellular chemotaxis to 300 pM hrANXA1 was assessed;
a proportion of cells was analyzed for surface LPA2 receptor expression by
immunofluorescence using a rabbit polyclonal anti-human LPA2 Ab (1:500
dilution; Santa Cruz Biotechnology, Dallas, TX) and an AF594-conjugated
goat anti-rabbit secondary Ab (Invitrogen). Receptor expression on 20,000
events was analyzed using a FACSCalibur flow cytometer (BD Bio-
sciences) and analyzed using FlowJo analysis software (Version 9.6.3; Tree
Star). A similar proportion of cells collected after 48 h was analyzed for
mRNA expression of LPA1, LPA2, LPA4, LPA5, and LPA6 by quantitative
RT-PCR.
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FIGURE 1. Annexin A1 is a potent chemoattractant of human classical monocytes in vitro, acting through ALX/FPR2. (A) Cumulative migration of

human monocytes to hrANXA1 over a 90-min period, assessed using a 96-well Boyden chamber assay; data are mean 6 SEM, and are representative of

three independent donors. *p , 0.05 versus control migration, +p , 0.05 versus chemokinesis. (B) End-point migration of human monocytes embedded in

50% Matrigel after 30-min exposure to medium or an increasing gradient of hrANXA1 (maximum 300 pM). Black points represent net positive migration;

red points represent net negative migration. Data are representative of three independent donors. (C) Human monocyte population subtypes prior to and

after migration toward 300 pM hrANXA1; data are mean 6 SEM of three independent donors. *p , 0.05 between classical monocyte fractions. (D)

Chemotaxis of human monocytes toward 300 pM hrANXA1, 200 pM hrCCL2, or a mixture of 300 pM hrANXA1 and 200 pM hrCCL2; data are mean 6
SEM of three independent donors. *p, 0.05 versus medium control, +p, 0.05 versus migration to hrCCL2 alone. (E) Surface expression of ALX/FPR2 by

different human monocyte subtypes, defined by relative expression of CD14 and CD16; shaded histogram is IgG1 isotype (Figure legend continues)
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Statistical analysis

All quantified in vitro data are derived from at least three independent donors,
with experiments performed in triplicate, and are expressed as mean6 SEM.
Murine in vivo experiments were performed with a group size of n = 4–6,
sufficient to identify a 20% effect size with a power of 0.8, and are expressed
as mean6 SEM. Data were tested for normality using the Shapiro–Wilk test
and analyzed by one- or two-way ANOVA, as appropriate, with post hoc
comparison using Tukey’s honest significant difference test. In all cases, a p
value ,0.05 was taken as indicating statistical significance.

Results
Annexin A1 attracts human monocytes via ALX/FPR2

Recruitment of monocytes from the circulation is critical for
resolution and termination of acute inflammation (2). The pro-
resolving protein ANXA1 is a significant component of inflam-
matory exudates (22); hence, we investigated its monocyte
chemoattractive potential. Using the classical Boyden chamber
assay, we demonstrated a clear concentration-dependent chemo-
tactic action of hrANXA1 upon human peripheral blood mono-
cytes, effects being apparent at concentrations from 100 pM
(Fig. 1A, Table I). This chemotactic effect was confirmed through
use of a three-dimensional chemotaxis test, in which cells sus-
pended in a 50% Matrigel matrix were exposed to unidirectional
300 pM hrANXA1 for 30 min. Untreated monocytes showed a low
degree of random movement (Rayleigh test for uniformity of di-
rection, p = 0.08), whereas cells exposed to hrANXA1 showed
a striking net movement toward the protein (Rayleigh test, p =
2.12 3 1027; Fig. 1B, Table II, Supplemental Videos 1, 2). In
comparison, chemotaxis of human neutrophils toward hrANXA1
was negligible (Supplemental Table I).
Three principal classes of circulating monocytes have been

described in healthy humans (23), as follows: CD14highCD162ve

(classical cells), CD14highCD16+ve (resident cells), and CD14low

CD16+ve (intermediate cells). Among these, CD14highCD162ve

monocytes are the largest population and fulfill the principal re-
solving roles of monocytes; hence, we hypothesized these would
be predominantly recruited by hrANXA1. Comparison of subtype
distribution (gating strategy shown in Supplemental Fig. 2A)
within cells of the same donor prior to and after chemotaxis to-
ward hrANXA1 revealed a significant and selective increase in
CD14highCD162ve cell proportion, with an accompanying de-
crease in the other subtypes (Fig. 1C), confirming classical
monocytes as the principal responders to ANXA1. To assess
ANXA1 chemoattractant potency, we compared monocyte mi-
gration toward 300 pM hrANXA1 with that toward CCL2 (200 pM).

Migration toward either stimulus alone was of comparable mag-
nitude, but, intriguingly, migration toward both together was sig-
nificantly lower than to either alone (Fig. 1D).
As many of the bioactions of ANXA1 are mediated through ALX/

FPR2 (24), we examined expression of this receptor on different
monocyte subsets, confirming significant expression solely on
CD14highCD162ve cells (Fig. 1E), as previously reported (25). The
importance of ALX/FPR2 was further confirmed in experiments in
which pretreatment of monocytes with the selective antagonist
WRW4 abrogated hrANXA1-induced chemotaxis (Fig. 1F), an ef-
fect not seen with an antagonist specific for the closely related
FPR1, cyclosporin H (Fig. 1G). Supporting these data, confocal
microscopy examination of monocytes exposed to unidirectional
300 pM hrANXA1 revealed a clear concentration of ALX/FPR2
expression at the leading edge of migrating cells (Fig. 1H).

Binding of ANXA1 to ALX/FPR2 triggers activation of
phospholipase metabolism

Several distinct signaling systems are known to be involved in the
regulation of monocyte chemotaxis, including the PI3K/Akt, p38,
and ERK1/2 pathways; accordingly, we investigated the engage-
ment of these pathways in our defined experimental settings.
Exposure of primary human monocytes to 300 pM hrANXA1
induced a rapid and short-lived increase in phosphorylated p38
MAPK, optimal between 1 and 5 min posttreatment (Fig. 2A),
whereas, in contrast, no response was observed for Akt or ERK1/2
(data not shown). Functionally, pretreatment of monocytes for 10
min with the p38 MAPK inhibitor SB203580—at concentrations
specific for p38a, the predominant monocyte/macrophage isotype
(26)—blocked hrANXA1-driven chemotaxis (Fig. 2B).
There is literature associating ANXA1 biology with the enzyme

cytosolic phospholipase A2 (cPLA2), a molecule that alongside the
related calcium-independent phospholipase A2 (iPLA2) is known
to be important in monocyte chemotaxis to CCL2 (27). Conse-
quently, we investigated the potential importance of these two
enzymes in cell chemotaxis evoked by application of low-dose
ANXA1. Stimulation of human monocytes for 15 min with
hrANXA1 (300 pM) induced a marked upregulation in iPLA2, but
not cPLA2, activity, an effect sensitive to pretreatment with the
p38 inhibitor SB203580 (Fig. 3A, 3B), indicating that iPLA2 lies
downstream of p38. Activation of iPLA2 was directly related to
chemotaxis, as incubation of monocytes with either of the selec-
tive iPLA2 inhibitors bromoenol lactone or methylarachidonyl
fluorophosphonate prevented their migration toward hrANXA1 in
a concentration-dependent manner (Fig. 3C, 3D). In contrast,

control, clear histogram is FPR2, data are representative of three independent donors. (F) Chemotaxis of human monocytes toward 300 pM hrANXA1 with or

without 10-min preincubation with the selective ALX/FPR2 antagonist WRW4 at 10 mM; data are mean6 SEM of three independent donors. *p, 0.05 versus

medium control, +p , 0.05 versus hrANXA1 treatment alone. (G) Chemotaxis of human monocytes toward 300 pM hrANXA1 with or without 10-min

preincubation with the selective FPR1 antagonist cyclosporin H at 10 mM; data are mean 6 SEM of three independent donors. *p , 0.05 versus medium

control. (H) Confocal microscopic analysis of ALX/FPR2 localization in human blood monocytes after exposure to a hrANXA1 gradient (maximum con-

centration 300 pM). Images are representative of cells from three independent donors. Scale bar, 3 mm.

Table I. Checkerboard analysis of monocyte chemotaxis toward hrANXA1

hrANXA1 in Lower Well (pM)

hrANXA1 in Upper Well (pM)

0 30 100 300 1000

0 5.1 6 0.3 5.5 6 0.1 6.5 6 0.4 6.9 6 0.5 7.5 6 0.5*
30 5.3 6 0.3 5.7 6 0.1 5.4 6 0.1 5.2 6 1.4 6.6 6 0.5
100 8.5 6 0.6* 6.7 6 0.5 6.5 6 0.7 6.4 6 0.8 6.1 6 1.9
300 13.6 6 1.4* 7.7 6 0.4* 7.5 6 0.3* 6.3 6 0.4 6.2 6 0.5
1000 15.4 6 0.8* 8.9 6 0.3* 9.6 6 0.8* 10.8 6 0.9* 6.9 6 0.7

Data are mean 6 SEM of three independent donors.
*p , 0.05 versus control migration.
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application of the specific cPLA2 inhibitor CAY10650 had no
effect on monocyte chemotaxis toward hrANXA1 (Fig. 3E). Im-
portantly, application of bromoenol lactone was unable to modify
the chemotactic response of human monocytes to the ALX/FPR2
ligands serum amyloid A or WKYMVm, indicating that activation
of iPLA2 might be selective for ANXA1-triggered ALX/FPR2
signaling (Fig. 3F). Confocal microscopic analysis of human
monocytes revealed that exposure to unidirectional hrANXA1
resulted in accumulation of iPLA2b immunoreactivity to the
leading edge of the monocyte (Fig. 3G), an effect occurring to-
gether with cell polarization (Fig. 3G, bar graph).
Collectively, these experiments identify ANXA1 and ALX/

FPR2 as a novel chemotactic determinant pair for monocyte
chemotaxis and reveal the selective involvement of iPLA2.

The iPLA2 product LPA underlies chemotactic migration

The principal iPLA2 product is the phospholipid LPA. As LPA can
promote cancer cell migration during metastasis (28), we inves-

tigated whether this lipid could mediate the chemotactic actions of
ANXA1. Stimulation of human monocytes with hrANXA1 (300

pM; 15 min) significantly enhanced LPA cellular content, an effect

blocked by pretreatment with either the ALX/FPR2 antagonist

WRW4 (Fig. 4A) or the iPLA2 inhibitor bromoenol lactone

(Fig. 4B), further confirming engagement of this path in ANXA1

signaling in monocytes.
Six distinct receptors have been identified for LPA, of which we

detected mRNA transcripts for five (LPA1, LPA2, LPA4, LPA5, and

LPA6) in primary human monocytes (Fig. 4C). Pretreatment of

monocytes for 10 min with either the LPA1–4 pan-antagonist

a-bromomethylene phosphonate-LPA or the LPA2 antagonist

H2L518603 significantly impaired migration toward hrANXA1,

an effect not seen following similar pretreatment with the dual

LPA1/LPA3 antagonist Ki16425, except at the highest concentra-

tion tested where selectivity is lost and antagonism for LPA2

emerges (Fig. 4D–F). These data strongly suggest that LPA2 might

be the principal receptor underlying ANXA1-dependent monocyte

chemotaxis. This was functionally confirmed using a gene-

targeting approach, selectively downregulating LPA2 in primary

human monocytes. Cells transfected with any of three different

LPA2-targeting siRNA constructs exhibited significantly reduced
chemotaxis to hrANXA1, an effect seen neither upon transfection

of cells from the same donors with a nontargeting negative control

siRNA nor in mock-transfected cells (Fig. 4G, 4H). Importantly,

targeting LPA2 did not affect gene products for the other LPA

receptors (Fig. 4G).

LPA acts via mobilization of the actin cytoskeleton

LPA receptors couple to a variety of G proteins leading to activation
of the small GTPases Rac1 and Rho (29), well known as important

in cytoskeletal rearrangement, a prerequisite for cell migration. As

we have shown, ANXA1 treatment can modulate small GTPase

activity, including the RhoA–ROCK pathway, in target cells (30),

we reasoned that inhibiting these pathways might affect ANXA1-

dependent chemotaxis. Pretreatment of monocytes with the Rac1

inhibitor NSC23766 blocked the chemotactic effect of hrANXA1,

an effect not observed following pretreatment with either the

RhoA inhibitor exoenzyme C3 or the Cdc42 inhibitor ML-141

(Fig. 5A).
To verify that cytoskeletal rearrangement follows exposure to

ANXA1, we assessed the degree of actin polymerization in primary

human monocytes upon treatment with 300 pM hrANXA1,

identifying a clear accumulation of F-actin, most prominent 15 min

poststimulation (Fig. 5B). Of relevance, to confirm specificity and

integrity of the pathway, F-actin accumulation elicited by

hrANXA1 was prevented by monocyte pretreatment with the

ALX/FPR2 antagonist WRW4, the iPLA2 inhibitor bromoenol

lactone, or the LPA2 antagonist H2L518603 (Fig. 5C).
Together, these data allow us to propose the schematic pathway

depicted in Fig. 5D, whereby ANXA1 activation of ALX/FPR2 in

CD14highCD162ve monocytes leads, through p38/iPLA2 signaling,

to LPA formation and downstream activation of the LPA2 receptor,

in an autocrine or more likely paracrine fashion, ultimately causing

actin reorganization and cell chemotaxis.

ANXA1 acts as a murine monocyte chemoattractant via
alx/fpr2/3 in vivo

Having identified ANXA1 as an effective human monocyte
chemoattractant in vitro, we investigated whether this novel

bioaction would hold true in animal models in vivo. Direct ad-

ministration of hrANXA1 to the mouse peritoneum (1 mg, i.p.

in 100 ml saline) induced a clear recruitment of monocytes to

Table II. Characteristics of migrating monocytes in three-dimensional
migration assay

Control hrANXA1 (300 pM)

Velocity (mm/min) 0.90 6 0.12 3.96 6 0.27*
Accumulated distance (mm) 28.70 6 2.90 119.19 6 7.59*
Euclidean distance (mm) 1.61 6 0.17 9.57 6 0.93*

Data are mean 6 SEM of three independent donors.
*p , 0.05 versus unstimulated control cells.

FIGURE 2. Chemotaxis of monocytes toward hrANXA1 requires se-

quential activation of p38 MAPK and calcium iPLA2. (A) Representative

Western blot analysis of phospho-p38a and total p38a following exposure

of human monocytes for 0, 1, 2, 3, 5, 10, and 15 min to 300 pM hrANXA1.

Densitometric analysis data are mean6 SEM of three independent donors.

*p , 0.05 versus respective 0-min control. (B) Chemotaxis of human

monocytes toward 300 pM hrANXA1 with or without 10-min pre-

incubation with the p38 MAPK inhibitor SB203580; data are mean 6
SEM of three independent donors. *p, 0.05 versus medium control, +p ,
0.05 versus hrANXA1 treatment alone.
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the cavity within 24 h, a response markedly absent in mice
lacking the murine equivalents of ALX/FPR2, termed alx/fpr2/3
(Fig. 6A).

Measurement of GFP expression, which in this colony is under
the control of the fpr2/3 locus (17), revealed greater gene activity in
Ly6Chigh monocytes than in Ly6Clow cells (GFP median fluorescence

FIGURE 3. Chemotaxis of monocytes toward hrANXA1 requires activation of calcium iPLA2, but not cPLA2. (A) Human monocyte iPLA2 activity 30 min

poststimulation with 300 pM hrANXA1, with or without 10-min pretreatment with the p38 MAPK inhibitor SB203580; data are mean 6 SEM of four inde-

pendent donors. *p, 0.05 versus untreated control, +p, 0.05 versus hrANXA1 treatment. (B) Human monocyte cPLA2 activity 30 min poststimulation with 300

pM hrANXA1, with or without 10-min pretreatment with the p38 MAPK inhibitor SB203580; data are mean6 SEM of four independent donors. (C) Chemotaxis

of human monocytes toward 300 pM hrANXA1 with or without 10-min preincubation with the iPLA2 inhibitor bromoenol lactone; data are mean 6 SEM of

three independent donors. *p, 0.05 versus medium control, +p, 0.05 versus hrANXA1 treatment alone. (D) Chemotaxis of human monocytes toward 300 pM

hrANXA1 with or without 10-min preincubation with the iPLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP); data are mean 6 SEM of three

independent donors. *p , 0.05 versus medium control, +p , 0.05 versus hrANXA1 treatment alone. (E) Chemotaxis of human monocytes toward 300 pM

hrANXA1 with or without 10-min preincubation with the cPLA2 inhibitor CAY10650; data are mean 6 SEM of three independent donors. *p , 0.05 versus

medium control. (F) Chemotaxis of human monocytes toward standard culture medium, 100 nM serum amyloid A or 500 nMWKYMVmwith or without 10-min

preincubation with the iPLA2 inhibitor bromoenol lactone (60 nM); data are mean 6 SEM of three independent donors. *p , 0.05 versus medium control.

(G) Confocal microscopic analysis of iPLA2 localization in human monocytes exposed to a hrANXA1 gradient (maximum concentration 300 pM), showing DAPI

nuclear counterstain (blue), phalloidin-identified filamentous b-actin (green), and iPLA2 (red); false color images represent the distribution of iPLA2 immuno-

staining throughout the cell. Arrowhead indicates point of polarization; images are representative of three independent donors. Scale bar, 5 mm. Graph represents

the proportion of monocytes exhibiting polarized iPLA2 distribution upon exposure to hrANXA1; data are mean6 SEM of three independent donors. *p, 0.05

versus untreated control cells.
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FIGURE 4. Chemotaxis of monocytes toward hrANXA1 is dependent upon production of LPA and consequent activation of the LPA2 receptor. (A)

Analysis of human monocyte LPA content 30 min poststimulation with 300 pM hrANXA1 with or without pretreatment for 10 min with the selective ALX/

FPR2 antagonist WRW4 at 10 mM; data are mean 6 SEM of three independent donors. *p , 0.05 versus untreated controls, +p , 0.05 versus hrANXA1

treatment. (B) Analysis of human monocyte LPA content 30 min poststimulation with 300 pM hrANXA1 with or without pretreatment for 10 min with the

iPLA2 inhibitor bromoenol lactone at 60 nM; data are mean 6 SEM of three independent donors. *p , 0.05 versus untreated controls, +p , 0.05 versus

hrANXA1 treatment. (C) RT-PCR analysis of LPA receptor gene expression in human monocytes alongside GAPDH positive control; image is repre-

sentative of data from three independent donors. (D) Chemotaxis of human monocytes toward 300 pM hrANXA1 with or without 10-min preincubation

with the pan-specific LPA1–4 receptor antagonist 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl phosphonate; data are mean 6 SEM of three independent

donors. *p , 0.05 versus medium control, +p , 0.05 versus hrANXA1 treatment alone. (E) Chemotaxis of human monocytes toward 300 pM hrANXA1

with or without 10-min preincubation with the specific LPA2 receptor antagonist H2L5186303; data are mean 6 SEM of three independent donors. *p ,
0.05 versus medium control, +p , 0.05 versus hrANXA1 treatment alone. (F) Chemotaxis of human monocytes toward 300 pM hrANXA1 with or without

10-min preincubation with the LPA1 and LPA3 receptor antagonist Ki16425; data are mean 6 SEM of three independent donors. *p , 0.05 versus medium

control, +p , 0.05 versus hrANXA1 treatment alone. (G) Expression of LPA1, LPA2, LPA4, LPA5, and LPA6 mRNA in human monocytes 48 h after mock

transfection, or transfection with a nontargeting siRNA control sequence or one of three independent siRNA constructs specifically targeting LPA2,

measured using the 22DDCt method and expressed as relative to untransfected cells; data are mean 6 SEM of three independent donors. *p , 0.05 versus

mock transfected by Kruskal–Wallis analysis. (H) Typical flow cytometry profiles of surface LPA2 receptor expression on untransfected human monocytes

or 48 h after mock transfection, or transfection with a nontargeting siRNA control sequence or one of three independent siRNA constructs specifically

targeting LPA2. (I) Chemotaxis toward 300 pM hrANXA1 of untransfected human monocytes or cells 48 h after mock transfection, or transfection with one

of three siRNA constructs specifically targeting LPA2 or a nontargeting negative control siRNA; data are mean 6 SEM of three independent donors. *p ,
0.05 versus medium control, +p , 0.05 versus migration to hrANXA1 of nontargeting siRNA-transfected cells.
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intensity: Ly6ChighF4/80+, 17.2 6 1.6 versus Ly6ClowF4/80+,
3.3 6 0.2, p , 0.01 by paired t test), indicating that, as with
humans, murine classical monocytes are the principal responders
to ANXA1. To investigate whether the same pathway elucidated
with human cells was operative in the mouse, the effects of the
selective iPLA2 inhibitor bromoenol lactone were tested. At the
dose of 6 mg/kg (224 h and time 0 i.v.) (31), bromoenol lactone
significantly reduced ANXA1-induced monocyte recruitment in
wild-type mice, without altering native peritoneal cells (Fig. 6B).
We next investigated whether endogenous ANXA1 played

a similar role during more complex inflammatory settings, using
zymosan-induced peritonitis as a typical resolving inflammatory
response (32). Administration of a mild dose of zymosan (0.5 mg)
induced a time-dependent recruitment of monocytes in wild-type
mice, peaking between 24- and 48-h administration (Fig. 6C), as
reported previously (33). In contrast, both anxA12/2 and alx/fpr2/
32/2 mice showed markedly attenuated monocyte recruitment
(Fig. 6C), despite high neutrophil extravasation (Fig. 6D), and the
presence of similar circulating monocyte numbers as wild-type
mice (Fig. 6E). Moreover, comparison of inflammatory exudate
cytokines (Table III) revealed not only that anxA12/2 and alx/
fpr2/32/2 mice exhibited exaggerated inflammatory reactions
compared with wild-type animals, indicated by levels of TNF-a,
IL-1b, and IL-10 at the 4-h time point, but that, despite the di-
minished recruitment of monocytes in the knockout strains, levels
of the chemoattractants CCL2, CXCL1, and CCL5 were in fact
higher (at 4 h postzymosan) than in wild-type animals. Addi-
tionally, to verify whether the reduced monocyte recruitment in
alx/fpr2/32/2 mice was due to a failure in production of ANXA1,
we measured levels of the protein in peritoneal lavages of wild-
type and alx/fpr2/32/2 mice. Both genotypes exhibited an increase
in endogenous lavage AnxA1 4 h postzymosan, but this increase
was markedly greater in alx/fpr2/32/2 mice and was maintained
for at least 24 h (Fig. 6F).

Confirmation of the importance of this pathway in inflammation
was provided by use of the cecal ligation and puncture model of
sepsis (19). Wild-type animals exhibited significant recruitment of
monocytes 24 h postsurgery, but this was markedly absent in alx/
fpr2/32/2 mice, despite similar neutrophil recruitment in both
genotypes (Fig. 6G, 6H). Experiments were terminated for ethical
reasons at 24 h postsurgery, at which point the neutrophil to
monocyte ratio (a hallmark of resolution) was significantly greater
in septic alx/fpr2/32/2 mice than their wild-type counterparts
(Fig. 6I), further indicating a failure of inflammatory resolution.
These experiments indicate that ALX/FPR2 activation by en-

dogenous ligands or exogenous ANXA1 can promote monocyte
recruitment, an effect that, at least following pharmacological
administration, relies on the mouse orthologs of ALX/FPR2 and
iPLA2 activation. Characterization of the response in alx/fpr2/32/2

mice suggests the existence of an altered loop, as evidenced by
abnormal levels of AnxA1—and specific chemokines—in inflam-
matory exudates.

Apoptotic neutrophils are the principal source of ANXA1 in
inflammation

Having established that ANXA1 can serve as a monocyte che-
moattractant in vitro and in vivo, we investigated the cellular source
during ongoing inflammation: neutrophils were our prime suspects,
as they are known to exhibit enhanced AnxA1 gene expression
upon tissue recruitment (34) and to release the protein upon ap-
optosis (13). Dorsal air pouches were created on male wild-type
and alx/fpr2/32/2 mice, into which apoptotic murine neutrophils
were injected (Fig. 7A). After 48 h, significant monocyte re-
cruitment was seen in wild-type animals, but this was impaired
(by ∼50%) in alx/fpr2/32/2 mice (Fig. 7B). This reduced response
was not due to inadequate AnxA1 production, as pouch lavage
AnxA1 levels were even greater in alx/fpr2/32/2 mice than in
their wild-type counterparts (Fig. 7C).

FIGURE 5. LPA signaling induces actin remodelling via activation of the small G protein Rac1. (A) Chemotaxis of human monocytes toward 300 pM

hrANXA1 with or without 10-min preincubation with the specific Rac1 inhibitor NSC 23766 (100 mM) or the specific Rho inhibitor exoenzyme C3

transferase (1 mg/ml); data are mean 6 SEM of three independent donors. *p , 0.05 versus medium control, +p , 0.05 versus hrANXA1 treatment alone.

(B) Mean fluorescence intensity of phalloidin-AF488–stained human monocytes treated with 300 pM hrANXA1 for 0–30 min; data are mean 6 SEM of

three independent donors. *p , 0.05 versus untreated control cells. (C) Mean fluorescence intensity of phalloidin-AF488–stained human monocytes treated

with 300 pM hrANXA1 for 15 min with or without preincubation for 10 min with the ALX/FPR2 antagonist WRW4 (10 mM), the iPLA2 inhibitor

bromoenol lactone (60 nM), or the LPA2 antagonist H2L5186303 (9 nM); data are mean 6 SEM of three independent donors. *p , 0.05 versus untreated

control cells, +p , 0.05 versus cells treated with hrANXA1 alone. (D) Schematic representation of proposed mechanism by which ANXA1 induces

monocyte chemotaxis.
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FIGURE 6. ANXA1 recruits monocytes during inflammation in vivo through the mediation of iPLA2. (A) Peritoneal lavage monocytes 24 h after i.p.

administration of 1 mg hrANXA1 or 100 ml saline to wild-type or alx/fpr2/32/2 mice. Inset, Typical flow cytometry profiles of 10,000 events from

peritoneal lavages of wild-type mice treated with saline or hrANXA1; gated populations are I, neutrophils; II, monocytes; and III, macrophages. Data are

mean 6 SEM, n = 6. *p , 0.05 versus saline control. (B) Peritoneal lavage monocytes 24 h after i.p. administration of 1 mg hrANXA1 or 100 ml saline to

wild-type mice with or without pretreatment with 6 mg/kg bromoenol lactone (2 injections, 24 h apart) or vehicle; data are mean 6 SEM, n = 6. *p , 0.05

versus saline control, +p , 0.05 versus vehicle. (C) Peritoneal lavage monocytes 0, 4, 24, 48, 72, and 96 h after i.p. administration of 0.5 mg zymosan to

wild-type (d), alx/fpr2/32/2 (☐), or AnxA12/2 (s) mice; data are mean 6 SEM, n = 4. *p , 0.05 for wild-type versus alx/fpr2/32/2, +p , 0.05 for wild-

type versus AnxA12/2. (D) Peritoneal lavage neutrophils 0, 4, 24, 48, 72, and 96 h after i.p. administration of 0.5 mg zymosan to wild-type (d), alx/fpr2/

32/2 (☐), or AnxA12/2 (s) mice; data are mean 6 SEM, n = 4. (E) Blood neutrophils and monocytes 48 h after i.p. administration of 0.5 mg zymosan to

wild-type alx/fpr2/32/2 or AnxA12/2 mice; data are mean 6 SEM, n = 4. (F) Peritoneal lavage AnxA1 content 0, 4, 24, 48, 72, and 96 h after i.p.

administration of 0.5 mg zymosan to wild-type (d) and alx/fpr2/32/2 (☐) mice. Inset, Typical Western blot of lavage AnxA1 content 0, 4, 24, 48, 72, and

96 h after i.p. administration of 0.5 mg zymosan to wild-type mice. Data are mean 6 SEM, n = 4. *p , 0.05 versus wild type. (G) Peritoneal lavage

monocytes 24 h after cecal ligation and puncture of wild-type and alx/fpr2/32/2 mice; data are mean 6 SEM, n = 7–8. *p , 0.05 versus sham control,
+p, 0.05 versus wild type. (H) Peritoneal lavage neutrophils 24 h after cecal ligation and puncture of wild-type and alx/fpr2/32/2mice; data are mean6 SEM,

n = 7–8. *p, 0.05 versus sham control. (I) Peritoneal lavage neutrophil to monocyte ratio 24 h after cecal ligation and puncture of wild-type and alx/fpr2/32/2

mice; data are mean 6 SEM, n = 7–8. *p , 0.05 versus sham control, +p , 0.05 versus wild type.

The Journal of Immunology 9

 by guest on June 24, 2015
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/


To confirm that apoptotic neutrophils were the principal source
of ANXA1, we performed crossover experiments in which apo-
ptotic neutrophils from either wild-type or AnxA12/2 mice were
injected into dorsal air pouches borne on either AnxA12/2 or
wild-type animals. AnxA12/2 mice had significantly greater
monocyte recruitment than wild-type animals, suggestive of en-
hanced inflammatory reactivity to apoptotic cells, as has been
reported previously (18). However, more relevant in this study,
animals treated with AnxA12/2 apoptotic neutrophils showed
significantly lower monocyte recruitment (∼80% reduction) than
animals treated with wild-type neutrophils, regardless of their
genetic background (Fig. 7D, 7E). As final validation of ANXA1
as the principal chemoattractant from apoptotic neutrophils, we
exposed human monocytes to supernatant from apoptotic human
polymorphonuclear cells treated with either a neutralizing anti-
ANXA1 mAb (35) or its isotype control. Apoptotic polymor-
phonuclear cell supernatant was a potent monocyte chemo-
attractant, but this activity was significantly inhibited by inclusion
of the anti-ANXA1 Ab, but not the isotype control (Fig. 7F).
Collectively, these findings strongly indicate effete, apoptotic

neutrophils as the principal reservoir for ANXA1 in an inflammatory
reaction, and are thus important recruiting agents for monocytes to
orchestrate the second, resolving phase of acute inflammation.

Discussion
Efficient and timely monocyte recruitment is a critical step in acute
inflammation, enabling the clearance of effete neutrophils and orderly
progression toward resolution. In this study, we reveal a novel role for
the proresolving protein ANXA1 in this process, identifying its ability
to recruit CD14highCD162 classical monocytes. Moreover, to our
knowledge, we reveal for the first time a functional circuit centered
on this protein, signaling via ALX/FPR2 to activate production of
LPA through iPLA2. Although LPA has been shown to have a role in
cancer cell metastasis (28), recent evidence indicates its importance
in the monocyte/macrophage response to CCL2 (27, 36), and, to-
gether with the present work, this identifies an important role for the
endogenous lipid in physiological inflammatory resolution.
A causal link between tissue-infiltrated neutrophils and conse-

quent monocyte recruitment has long been established, with
neutrophil-derived soluble factors being important monocyte
attractors (7). Although several such candidate chemoattractants

are known, these are principally proinflammatory and released by
viable, activated neutrophils (7). ANXA1 comprises ∼2–4% of
total neutrophil protein (12) and, significantly, is released to
a substantial degree upon apoptosis (13). Furthermore, migrated
neutrophils upregulate AnxA1 gene activity (34), contributing to
the abundant presence of this protein in exudates, as shown in
rodent (37) and human (22) settings. In all cases, we propose
AnxA1 as optimally placed to signal the presence of effete neu-
trophils and the need for their clearance—a critical step in reso-
lution. Our data confirm the central role for the ANXA1–ALX/
FPR2 pathway in resolution, and add modulation of monocyte
recruitment to its described proresolving abilities, that is, limita-
tion of neutrophil extravasation, induction of neutrophil apoptosis,
and promotion of apoptotic cell phagocytosis (24).
The comparison of ANXA1 and LL-37 as monocyte chemo-

attractants is intriguing, given that both signal via ALX/FPR2 to

recruit CD14highCD162 monocytes. However, whereas LL-37 has

clearly been shown to exert a proinflammatory influence upon

monocytes, for example, inducing release of IL-1b (38) and IL-8

(39), we and others have shown ANXA1 to induce anti-

inflammatory/proresolution effects in these cells, including sup-

pression of IL-6 and TNF-a (40), production of IL-10 (15), and

promotion of efferocytosis (13, 35). Notwithstanding this, we

propose that future studies will be needed to describe the phe-

notype of ANXA1-recruited monocytes and hence understand the

complex roles played by ALX/FPR2 in regulating monocyte be-

havior, ultimately leading to a proresolving function of recruited

cells. Moreover, this dichotomy in the actions of LL-37 and

ANXA1 emphasizes the complex role of ALX/FPR2 in inflam-

mation, which may at least partly be due to its ability to signal

either directly or in cooperation with the related classical proin-

flammatory receptor FPR1 (15). In contrast, it should also be

noted that the proinflammatory properties of LL-37 can be over-

estimated and the final outcome in complex settings is not always

predictable; for instance, FPR2-mediated neutrophil migration

stimulated by LL-37 is protective in a model of neointimal hy-

perplasia (41). Similarly, recent elegant studies have shown that

exogenous application of the N-terminal fragment of ANXA1,

peptide Ac2-26, can prevent chemokine-driven monocyte re-
cruitment to macrovascular atherosclerotic lesions (42); as the
short fragment [but not the entire protein (43)] can activate both

Table III. Peritoneal lavage chemokines and cytokines after zymosan-induced peritonitis in wild-type, Fpr2/32/2, and AnxA12/2 mice

0 h 4 h 24 h 48 h 72 h 96 h

MCP-1 (pg/ml) Wild type 95.9 6 9.0 9,009.2 6 933.6 181.6 6 21.8 121.3 6 7.8 104.3 6 3.4 137.6 6 18.6
Fpr2/32/2 112.6 6 7.4 11,534.9 6 493.4* 155.9 6 4.6 85.9 6 3.3 99.2 6 3.6 90.8 6 7.9
AnxA12/2 106.4 6 8.8 9,317.6 6 404.9+ 160.1 6 20.7 104.7 6 12.3 131.3 6 28.1 108.5 6 9.4

KC (CXCL1) Wild type 31.5 6 6.1 3,441.8 6 1,047.8 29.6 6 2.8 29.5 6 2.7 26.0 6 3.3 27.0 6 1.6
Fpr2/32/2 10.6 6 0.6 15,259.4 6 4,831.7* 17.1 6 4.8 12.3 6 2.5 10.0 6 0.5 15.0 6 3.3
AnxA12/2 26.9 6 3.9 4,591.2 6 2,147.6+ 29.0 6 7.7 25.0 6 2.3 21.3 6 1.1 20.4 6 2.2

RANTES (CCL5) Wild type 4.3 6 0.6 115.3 6 28.9 7.2 6 1.1 8.4 6 1.8 3.5 6 1.0 5.1 6 0.8
Fpr2/32/2 4.1 6 1.2 105.4 6 32.4 4.1 6 0.4 6.3 6 1.2 2.2 6 0.4 4.1 6 0.2
AnxA12/2 4.6 6 0.4 92.0 6 17.7 5.5 6 0.5 14.2 6 5.4 4.0 6 0.7 4.2 6 0.5

TNF-a (pg/ml) Wild type n.d. 15.2 6 3.4 n.d. n.d. n.d. n.d.
Fpr2/32/2 n.d. 90.7 6 12.9* n.d. n.d. n.d. n.d.
AnxA12/2 n.d. 40.4 6 6.7* n.d. n.d. n.d. n.d.

IL-1b (pg/ml) Wild type n.d. 86.0 6 10.7 13.3 6 1.8 9.7 6 2.1 n.d. 11.7 6 3.8
Fpr2/32/2 17.7 6 8.0 249.7 6 54.6* n.d. n.d. n.d. 13.4 6 4.1
AnxA12/2 13.6 6 4.9 109.3 6 19.6+ 18.4 6 7.0 13.3 6 6.2 n.d. n.d.

IL-10 (pg/ml) Wild type 214.6 6 12.8 1,126.7 6 185.9 155.5 6 31.3 81.7 6 21.8 66.7 6 19.9 82.2 6 6.0
Fpr2/32/2 187.9 6 49.6 468.7 6 123.8* 127.9 6 43.2 122.0 6 27.7 48.6 6 3.1 62.4 6 13.8
AnxA12/2 191.5 6 34.6 486.5 6 190.4* 61.5 6 14.2 66.7 6 21.3 51.4 6 27.9 72.5 6 39.6

Data are mean 6 SEM. n = 4.
*p , 0.05 versus wild-type, +p , 0.05 versus Fpr2/32/2.
n.d., below detection limit.
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FPR1 and FPR2, these results emphasize in their entirety the
complexity of the interplay between FPR1 and FPR2 in the in-
flammatory response (15).
Our data strongly support a role for neutrophil-derived ANXA1

in monocyte recruitment, but this protein is not exclusive to
neutrophils; it is expressed abundantly by monocytes themselves,
as well as epithelial and other cells. Nonetheless, the relative pre-
eminence of neutrophil-derived ANXA1 is indicated by our
experiments investigating monocyte recruitment to s.c. dorsal air
pouches. Administration of apoptotic wild-type neutrophils to
AnxA12/2 mice induced monocyte accumulation even greater than
that seen in the fully wild-type situation, whereas recruitment of
monocytes to wild-type animals in the absence of neutrophil-
derived ANXA1 was markedly attenuated, emphasizing that
neutrophil-derived ANXA1 is indeed a primary player in this pro-
cess. The increase in monocyte recruitment quantified in AnxA12/2

mice compared with wild-type animals, regardless of the genotype
of cells given, confirms the nonredundant role that endogenous
ANXA1 plays in tempering the early phase of inflammation, such as
blood-borne leukocyte recruitment, seen by us and others (24).
Although our data clearly implicate iPLA2 in ANXA1-driven

chemotaxis, the lack of involvement of cPLA2 is intriguing, given
that previous studies show the need for concerted activation of

both enzymes for efficient monocyte migration toward CCL2 (27,
44). Our findings thus not only emphasize the complexity of
signaling pathways underlying chemotaxis, but also offer the at-
tractive possibility of selectively enhancing monocyte recruitment
to resolving rather than proinflammatory stimuli. Although such
a goal requires further study, it may provide novel perspectives in
the treatment of chronic inflammatory disease.
Our identification of the central role of iPLA2 and consequent

LPA production in monocyte chemotaxis toward ANXA1 in vitro
and in vivo is of particular interest. Whereas LPA is known to
promote cancer cell migration—indeed, it receives much attention
as a potential antimetastatic target (28)—the role of this lipid in
noncancer settings has been poorly investigated. Production of
LPA by the extracellular enzyme autotaxin in secondary lymphoid
tissue plays a facilitative role in lymphocyte entry, and exoge-
nously applied LPA can exert promigratory effects on leukocytes
(45), but, to our knowledge, this is the first report showing a role
for endogenous LPA in innate cell migration. Moreover, although
autotaxin-derived LPA has recently been shown to mediate gen-
eration of allergic asthmatic inflammation (46), our data would
argue for a role of the lipid in resolving processes, highlighting the
intricacy of inflammatory control. Receptor selectively could be
a clue to these apparently contrasting properties.

FIGURE 7. Apoptotic neutrophils are the principal source of AnxA1-inducing monocyte recruitment in vivo. (A) Schematic representation of design of

air-pouch experiments. (B) Air-pouch lavage neutrophils and monocytes 48 h after the administration of 106 murine polymorphonuclear cells previously

rendered apoptotic through overnight incubation with 1 mg/ml actinomycin D to wild-type or alx/fpr2/32/2 mice; data are mean 6 SEM, n = 6. *p , 0.05

versus wild type. (C) Air-pouch lavage AnxA1 24 h after the administration of 106 apoptotic murine polymorphonuclear cells to wild-type or alx/fpr2/32/2

mice; data are mean 6 SEM, n = 6. *p , 0.05 versus wild type. (D) Total lavage monocytes 24 h after administration of 106 apoptotic murine poly-

morphonuclear cells from wild-type or AnxA12/2 mice to air pouches borne by wild-type or AnxA12/2 mice; data are mean 6 SEM, n = 6. *p , 0.05

versus animals of the same genotype administered wild-type polymorphonuclear cells, +p , 0.05 versus wild-type animals receiving wild-type poly-

morphonuclear cells. (E) Representative flow cytometry histograms showing recruitment of F4/80+ murine monocytes. (F) Chemotaxis of human monocytes

toward cell-free supernatant from apoptotic polymorphonuclear cells, treated with either a neutralizing anti-ANXA1 mAb, or its IgG2A isotype control (50

ng/ml in both cases). Inset, Typical Western blot of ANXA1 content in standard medium (SM) or apoptotic polymorphonuclear cell supernatant (APS).

Data are mean 6 SEM of three independent donors. *p , 0.05 versus medium control, +p , 0.05 versus isotype control alone.
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To date, six G protein–coupled receptors have been described
for LPA, with our data identifying LPA2 as a critical actor in
monocyte migration toward hrANXA1. The synchronized acti-
vation of the two different receptors, ALX/FPR2 and LPA2, thus
underlying monocyte migration toward ongoing inflammation
emphasizes the importance of coordinated signaling networks in
resolution. Such harmonized receptor activation appears to be
a common feature of ALX/FPR2 behavior, whether this occurs
sequentially as described in this work, or through direct receptor
association, as seen with, for example, FPR1 (15) or the urokinase
receptor (47). Such a network of signaling events centered on
ALX/FPR2 may therefore aid in explaining the ability of this
receptor to regulate a multitude of fundamental host response
processes in inflammation. In other words, we propose that ALX/
FPR2 is located high in the hierarchy of proresolving receptors.
Cellular migration ultimately depends upon directed modulation

of the cytoskeleton and formation of a leading edge and uropod, an
action mediated by small G proteins, and in which the balance of
RhoA and Rac1 activity is critical (48). The link between ANXA1
and actin mobilization presented in this work in human monocytes
reinforces its relationship to the cytoskeleton, a feature we and
others have similarly identified in contexts as diverse as, for ex-
ample, cerebral endothelial tight junction regulation (30), anterior
pituitary hormone release (49), and mast cell degranulation (50).
Moreover, whereas LPA1 activation has been linked to Rac1-
dependent cell motility (51), to our knowledge, this is the first
report connecting Rac1 and LPA2, adding further detail to our
understanding of the role of these receptors in cytoskeletal
dynamics.
In conclusion, our data highlight a novel pathway in the self-

regulating nature of acute inflammation, with a protein released
at high levels from apoptotic neutrophils serving to recruit
monocytes that will then remove the same apoptotic cells, pro-
tecting healthy surrounding tissues. This is yet more evidence for
the importance of ALX/FPR2 in inflammatory regulation, con-
trolling and coordinating the interactions of the various cellular
players in this response. It is plausible that these multiple, non-
redundant functions of ALX/FPR2 endow this proresolving
G protein–coupled receptor with a promising therapeutic potential,
as recently discussed (52). In the same vein, our identification of
LPA production in ANXA1-driven chemotaxis reveals a novel role
for this lipid in resolution, opening up new aspects to its biology
and presenting potential pharmacological opportunities for chronic
inflammatory conditions.
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M. Drechsler, C. T. N. Pham, M.-W. Wang, J.-M. Wang, R. L. Gallo, et al. 2013.
Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ.
Res. 112: 792–801.

26. Hale, K. K., D. Trollinger, M. Rihanek, and C. L. Manthey. 1999. Differential
expression and activation of p38 mitogen-activated protein kinase alpha, beta,
gamma, and delta in inflammatory cell lineages. J. Immunol. 162: 4246–4252.

27. Carnevale, K. A., and M. K. Cathcart. 2001. Calcium-independent phospholipase
A(2) is required for human monocyte chemotaxis to monocyte chemoattractant
protein 1. J. Immunol. 167: 3414–3421.

28. Willier, S., E. Butt, and T. G. P. Grunewald. 2013. Lysophosphatidic acid (LPA)
signalling in cell migration and cancer invasion: a focused review and analysis of
LPA receptor gene expression on the basis of more than 1700 cancer micro-
arrays. Biol. Cell 105: 317–333.

29. Mutoh, T., R. Rivera, and J. Chun. 2012. Insights into the pharmacological
relevance of lysophospholipid receptors. Br. J. Pharmacol. 165: 829–844.

30. Cristante, E., S. McArthur, C. Mauro, E. Maggioli, I. A. Romero,
M. Wylezinska-Arridge, P. O. Couraud, J. Lopez-Tremoleda, H. C. Christian,
B. B. Weksler, et al. 2013. Identification of an essential endogenous regulator of
blood-brain barrier integrity, and its pathological and therapeutic implications.
Proc. Natl. Acad. Sci. USA 110: 832–841.
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Supplemental Table I: Chequerboard analysis of neutrophil chemotaxis towards hrANXA1; 
data are percentage of migrating cells, expressed as mean ± SEM of three independent 
donors; *p<0.05 vs. control migration.
 

hrANXA1 in 
lower well (pM)

hrANXA1 in upper well (pM)

0 100 300 1000

0 3.8±0.7 3.1±0.9 3.0±0.8 2.9±0.7
100 2.7±0.7 2.9±0.7 2.9±0.6 3.2±0.6
300 3.4±0.7 2.9±0.6 2.7±0.7 3.5±0.1

1000 2.6±0.4 2.2±0.4 3.3±0.2 3.5±0.5
fMLP (1μM) 44.6±1.7
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Supplemental figure 1: hrANXA1 gradient stability in chemotaxis assay apparatus.

Analysis by specific ELISA of hrANXA1 content in lower and upper wells of a 96-well plate

format Boyden chamber chemotaxis assay over time, with t=0 starting values of 4nM

hrANXA1 in the lower chamber and ANXA1-free medium in the upper; data are mean ± SEM

of 6 wells.
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Supplemental figure 2: Flow cytometry gating strategies. A) Gating strategy for the

identification of human blood monocyte sub-populations. B) Gating strategy for the identification

of murine neutrophils and monocytes in peritonitis, sepsis and air-pouch models.



Supplemental Video Legends 

 

Supplemental video 1: Baseline human primary monocyte motility in a three-dimensional 

chemotaxis experiment; images taken every 20s for 30min in the absence of chemoattractant, 

images at 9 fps, scale bar = 10µm  

 

Supplemental video 2: Human primary monocyte motility in a three-dimensional chemotaxis 

experiment upon exposure to 300pM hrANXA1 (from top of image); images taken every 20s 

for 30min, images at 9 fps, scale bar = 10µm. 
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