4,760 research outputs found
Self-report of Cognition and Objective Test Performance in Posttraumatic Headache
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74675/1/j.1526-4610.1996.3605300.x.pd
Genome-wide analysis of LTR retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.)
Background: Genome divergence by mobile elements activity and recombination is a continuous process that plays a key role in the evolution of species. Nevertheless, knowledge on retrotransposon-related variability among species belonging to the same genus is still limited. Considering the importance of the genus Helianthus, a model system for studying the ecological genetics of speciation and adaptation, we performed a comparative analysis of the repetitive genome fraction across ten species and one subspecies of sunflower, focusing on long terminal repeat retrotransposons at superfamily, lineage and sublineage levels. Results: After determining the relative genome size of each species, genomic DNA was isolated and subjected to Illumina sequencing. Then, different assembling and clustering approaches allowed exploring the repetitive component of all genomes. On average, repetitive DNA in Helianthus species represented more than 75% of the genome, being composed mostly by long terminal repeat retrotransposons. Also, the prevalence of Gypsy over Copia superfamily was observed and, among lineages, Chromovirus was by far the most represented. Although nearly all the same sublineages are present in all species, we found considerable variability in the abundance of diverse retrotransposon lineages and sublineages, especially between annual and perennial species. Conclusions: This large variability should indicate that different events of amplification or loss related to these elements occurred following species separation and should have been involved in species differentiation. Our data allowed us inferring on the extent of interspecific repetitive DNA variation related to LTR-RE abundance, investigating the relationship between changes of LTR-RE abundance and the evolution of the genus, and determining the degree of coevolution of different LTR-RE lineages or sublineages between and within species. Moreover, the data suggested that LTR-RE abundance in a species was affected by the annual or perennial habit of that species
Specific LTR-Retrotransposons Show Copy Number Variations between Wild and Cultivated Sunflowers
The relationship between variation of the repetitive component of the genome and domestication in plant species is not fully understood. In previous work, variations in the abundance and proximity to genes of long terminal repeats (LTR)-retrotransposons of sunflower (Helianthus annuus L.) were investigated by Illumina DNA sequencingtocompare cultivars and wild accessions. In this study, we annotated and characterized 22 specific retrotransposon families whose abundance varies between domesticated and wild genotypes. These families mostly belonged to the Chromovirus lineage of the Gypsy superfamily and were distributed overall chromosomes. They were also analyzed in respect to their proximity to genes. Genes close to retrotransposon were classified according to biochemical pathways, and differences between domesticated and wild genotypes are shown. These data suggest that structural variations related to retrotransposons might have occurred to produce phenotypic variation between wild and domesticated genotypes, possibly by affecting the expression of genes that lie close to inserted or deleted retrotransposons and belong to specific biochemical pathways as those involved in plant stress responses
Comparative genome-wide analysis of repetitive DNA in the genus Populus L.
Genome skimming was performed, using Illumina sequence reads, in order to obtain a detailed comparative picture of the repetitive component of the genome of Populus species. Read sets of seven Populus and two Salix species (as outgroups) were subjected to clustering using RepeatExplorer (NovĂĄk et al. BMC Bioinformatics 11:378 2010). The repetitive portion of the genome ranged from 33.8 in Populus nigra to 46.5% in Populus tremuloides. The large majority of repetitive sequences were long terminal repeat-retrotransposons. Gypsy elements were over-represented compared to Copia ones, with a mean ratio Gypsy to Copia of 6.7:1. Satellite DNAs showed a mean genome proportion of 2.2%. DNA transposons and ribosomal DNA showed genome proportions of 1.8 and 1.9%, respectively. The other repeat types accounted for less of 1% each. Long terminal repeat-retrotransposons were further characterized, identifying the lineage to which they belong and studying the proliferation times of each lineage in the different species. The most abundant lineage was Athila, which showed large differences among species. Concerning Copia lineages, similar transpositional profiles were observed among all the analysed species; by contrast, differences in transpositional peaks of Gypsy lineages were found. The genome proportions of repeats were compared in the seven species, and a phylogenetic tree was built, showing species separation according to the botanical section to which the species belongs, although significant differences could be found within sections, possibly related to the different geographical origin of the species. Overall, the data indicate that the repetitive component of the genome in the poplar genus is still rapidly evolving
Blood Pressure and Cognitive Decline Over 8 Years in Middle-Aged and Older Black and White Americans
Although the association between high blood pressure (BP), particularly in midlife, and late-life dementia is known, less is known about variations by race and sex. In a prospective national study of 22â164 blacks and whites â„45 years without baseline cognitive impairment or stroke from the REGARDS cohort study (Reasons for Geographic and Racial Differences in Stroke), enrolled 2003 to 2007 and followed through September 2015, we measured changes in cognition associated with baseline systolic and diastolic BP (SBP and DBP), as well as pulse pressure (PP) and mean arterial pressure, and we tested whether age, race, and sex modified the effects. Outcomes were global cognition (Six-Item Screener; primary outcome), new learning (Word List Learning), verbal memory (Word List Delayed Recall), and executive function (Animal Fluency Test). Median follow-up was 8.1 years. Significantly faster declines in global cognition were associated with higher SBP, lower DBP, and higher PP with increasing age ( P<0.001 for ageĂSBPĂfollow-up-time, ageĂDBPĂfollow-up-time, and ageĂPPĂfollow-up-time interaction). Declines in global cognition were not associated with mean arterial pressure after adjusting for PP. Blacks, compared with whites, had faster declines in global cognition associated with SBP ( P=0.02) and mean arterial pressure ( P=0.04). Men, compared with women, had faster declines in new learning associated with SBP ( P=0.04). BP was not associated with decline of verbal memory and executive function, after controlling for the effect of age on cognitive trajectories. Significantly faster declines in global cognition over 8 years were associated with higher SBP, lower DBP, and higher PP with increasing age. SBP-related cognitive declines were greater in blacks and men
Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 solâgel layers
The aim of this study was to demonstrate the
relationship between the structural and corrosion properties
of an ISO 5832-9 biomedical alloy modified with titanium
dioxide (TiO2) layers. These layers were obtained via the
solâgel method by acid-catalyzed hydrolysis of titanium
isopropoxide in isopropanol solution. To obtain TiO2 layers
with different structural properties, the coated samples
were annealed at temperatures of 200, 300, 400, 450, 500,
600 and 800 C for 2 h. For all the prepared samples,
accelerated corrosion measurements were performed in
Tyrodeâs physiological solution using electrochemical
methods. The most important corrosion parameters were
determined: corrosion potential, polarization resistance,
corrosion rate, breakdown and repassivation potentials.
Corrosion damage was analyzed using scanning electron
microscopy. Structural analysis was carried out for selected
TiO2 coatings annealed at 200, 400, 600 and 800 C. In
addition, the morphology, chemical composition, crystallinity,
thickness and density of the deposited TiO2 layers
were determined using suitable electron and X-ray measurement
methods. It was shown that the structure and
character of interactions between substrate and deposited
TiO2 layers depended on annealing temperature. All the
obtained TiO2 coatings exhibit anticorrosion properties, but
these properties are related to the crystalline structure and
character of substrateâlayer interaction. From the point of
view of corrosion, the best TiO2 solâgel coatings for stainless steel intended for biomedical applications seem to
be those obtained at 400 C.This study was supported by Grant No. N N507
501339 of the National Science Centre. The authors wish to express
their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy
Gene expression in Rhizoglomus irregulare at two different time points of mycorrhiza establishment in Helianthus annuus roots, as revealed by RNA-seq analysis
Arbuscular mycorrhizal fungi (AMF) play a fundamental role in plant growth and nutrition in natural and agricultural ecosystems. Despite the importance of such symbionts, the different developmental changes occurring during the AMF life cycle have not been fully elucidated at the molecular level. Here, the RNA-seq approach was used to investigate Rhizoglomus irregulare specific and common transcripts at two different time points of mycorrhizal establishment in Helianthus annuus in vivo. Four days after inoculation, transcripts related to cellular remodeling (actin and tubulin), cellular signaling (calmodulin, serine/threonine protein kinase, 14-3-3 protein, and calcium transporting ATPase), lipid metabolism (fatty acid desaturation, steroid hormone, and glycerophospholipid biosynthesis), and biosynthetic processes were detected. In addition to such transcripts, 16 days after inoculation, expressed genes linked to binding and catalytic activities; ion (K+, Ca2+, Fe2+, Zn2+, Mn2+, Pi, ammonia), sugar, and lipid transport; and those involved in vacuolar polyphosphate accumulation were found. Knowledge of transcriptomic changes required for symbiosis establishment and performance is of great importance to understand the functional role of AMF symbionts in food crop nutrition and health, and in plant diversity in natural ecosystems
Decoding the Genomic Landscape of Pomegranate: A Genome-Wide Analysis of Transposable Elements and Their Structural Proximity to Functional Genes
Transposable elements (TEs) significantly drive dynamic changes that characterize genome evolution. However, understanding the variability associated with TE insertions among different cultivars remains challenging. The pomegranate (Punica granatum L.) has yet to be extensively studied regarding the roles of TEs in the diversification of cultivars. Herein, we explored the genome distribution of TEs and its potential functional implications among four pomegranate cultivars, âBhagwaâ, âDabenziâ, âTaishanhongâ and âTunisiaâ, whose genome sequences are available. A total of 8404 full-length TEs were isolated. The content of TEs varied among the cultivars, ranging from 41.67% of âTaishanhongâ to 52.45% of âBhagwaâ. In all cultivars, the Gypsy superfamily of retrotransposons accounted for a larger genome proportion than the Copia superfamily. Seventy-three full-length TEs were found at the same genomic loci in all four cultivars. By contrast, 947, 297, 311, and 874 TEs were found exclusively in âBhagwaâ, âDabenziâ, âTaishanhongâ, and âTunisiaâ cultivars, respectively. Phylogenetic clustering based on the presence of TE insertions in specific loci reflected the geographic origins of the cultivars. The insertion time profiles of LTR-REs were studied in the four cultivars. Shared elements across the four cultivars exhibited, on average, a more ancient insertion date than those exclusive to three, two, or one cultivars. The majority of TEs were located within 1000 bp from the nearest gene. This localization was observed for 57% of DNA TEs and 55% of long-terminal repeat retrotransposons (LTR-RE). More than 10% of TEs resulted inserted within genes. Concerning DNA TEs, 3.91% of insertions occurred in introns, while 2.42% occurred in exons. As to LTR-REs, 4% of insertions occurred in exons and 1.98% in introns. Functional analysis of the genes lying close to TEs was performed to infer if differences in TE insertion can affect the fruit quality. Two TE insertions were found close to two genes encoding 4-coumarate--CoA ligase, an enzyme involved in the phenylpropanoid pathway. Moreover, a TIR/Mariner element was found within the exon of a gene encoding anthocyanidin reductase in the âTunisiaâ genotype, crucial in the biosynthesis of flavan-3-ols and proanthocyanidins, strictly correlated with the nutraceutical properties of pomegranate. Although functional and metabolomic studies are essential to elucidate the consequences of TE insertions, these results contribute to advancing our comprehension of the role of TEs in pomegranate genomics, providing insights for crop breeding
Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit-qudit dynamics
The generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies. Achieving such non-classical high-dimensional resources will potentially unlock enhanced capabilities for quantum cryptography, communication and computation. We propose a protocol that is able to attain entangled states of d-dimensional systems through a quantum-walk (QW)-based transfer & accumulate mechanism involving coin and walker degrees of freedom. The choice of investigating QW is motivated by their generality and versatility, complemented by their successful implementation in several physical systems. Hence, given the cross-cutting role of QW across quantum information, our protocol potentially represents a versatile general tool to control high-dimensional entanglement generation in various experimental platforms. In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons
- âŠ