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Abstract: The relationship between variation of the repetitive component of the genome and
domestication in plant species is not fully understood. In previous work, variations in the
abundance and proximity to genes of long terminal repeats (LTR)-retrotransposons of sunflower
(Helianthus annuus L.) were investigated by Illumina DNA sequencingtocompare cultivars and wild
accessions. In this study, we annotated and characterized 22 specific retrotransposon families whose
abundance varies between domesticated and wild genotypes. These families mostly belonged to
the Chromovirus lineage of the Gypsy superfamily and were distributed overall chromosomes.
They were also analyzed in respect to their proximity to genes. Genes close to retrotransposon
were classified according to biochemical pathways, and differences between domesticated and wild
genotypes are shown. These data suggest that structural variations related to retrotransposons
might have occurred to produce phenotypic variation between wild and domesticated genotypes,
possibly by affecting the expression of genes that lie close to inserted or deleted retrotransposons and
belong to specific biochemical pathways as those involved in plant stress responses.

Keywords: Helianthus annuus; long terminal repeat retrotransposons; plant domestication;
retrotransposon abundance; retrotransposon proximity to genes

1. Introduction

Transposable elements (TEs) are DNA sequences that are able to change their position in
the chromosomes. They are classified into two classes depending on whether the transposition
intermediate is RNA (Class I transposons or retrotransposons) or DNA (Class II or DNA transposons [1].
Class I elements are found in most eukaryotic lineages. In plants, the most abundant retrotransposon
order is that with long terminal repeats (LTRs), two direct repeats containing promoter and
RNA processing signals, flanking a region encoding a polyprotein that includes the enzymes
necessary for its transposition [1]. Plant LTR-retrotransposons (LTR-REs) are classified into two
main superfamilies—Copia and Gypsy [1]—which differ in the order of the enzymes within
the polyprotein [2]. LTR-RE length ranges from a few hundred base pairs to over 10 kbp [2].
Copia and Gypsy superfamilies are in turn classified into different major lineages based on sequence
similarity [3–5]. However, DNA sequence similarity within a lineage is minimal and limited to coding
regions. When sequence similarity within a lineage extends to noncoding portions, two elements may
be grouped in a single family [1].

Retrotransposons transpose by producing an RNA intermediate that is then reverse transcribed
to DNA and inserted at a new genome site [2]. This transposition mechanism, which uses
enzymes produced by the retrotransposon itself, a reverse transcriptase, a ribonuclease (RNAase),
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a protease, and an integrase, implies the production of a new copy for each transposition event.
Retrotransposon mobility in the genome is usually blocked by different epigenetic mechanisms;
however, some retrotransposons under certain environmental conditions are able to escape epigenetic
control by the host genome [6]. This escape can result in a huge increase in retrotransposon copy
number and consequently an extremely rapid and large increase in genome size when one considers
evolutionary timescales [1].

Even so, the retrotransposon component of the eukaryotic genomes is subject to rapid
turnover [7,8]. While retrotransposons can increase in number in a relatively short time span,
they can also be rapidly removed from the genome through the processes of unequal homologous and
illegitimate recombination [9,10].

Retrotransposons proliferation and loss can lead to the creation of haplotypes with different
LTR-RE numbers at specific loci [11,12]. Hence, the number of LTR-REs in a genome can also change
because of random combination between LTR-RE-rich or poor haplotypes.

Retrotransposon activity produces genetic variation with important effects on the evolution of
a species [13]. Transposons may insert in or near a gene, resulting in direct alteration of the coding
sequence, transcription regulation modification, or altered splicing patterns [14]. Insertion in the
proximity to a gene may also have consequences; since retrotransposons are epigenetically inactivated
by the host, integration of an element may actually modify the epigenetic setting of the insertion site.
Overall, retrotransposons are known to regulate the epigenetic setting of the genome and chromatin
organization and structure. Perhaps more importantly, insertion or removal of a retrotransposon can
change the expression rate or regulation of neighboring genes [15–18].

A few studies have investigated the possible role of transposable elements and other repetitive
elements of genomes in the domestication of crop plants [19] and have included work on maize [20,21],
rice [22], and sunflower [23].

The sunflower (Helianthus annuus L., Asteraceae) is one of the most important oilseed crops.
The origin of the genus Helianthus dates back 4.75–22.7 million years [24]. It is likely the sunflower
originated in Mexico and then spread through North America [25]. The first domestication of
sunflower probably occurred in the eastern regions of North America. Although archaeological studies
argued for an earlier cultivation in Mexico [26], molecular genetic studies have shown that modern
sunflower cultivars are most genetically similar to wild accessions of the Midwestern USA [27,28].
Thus, it appears that sunflower was domesticated by Native Americans in eastern North America.
The early domesticated genotypes were introduced to Europe at the beginning of the 16th century by
naturalists [29–31]. A massive breeding program for high oil yield developed in Russia in the 19th
century. In fact, even in North America, the first widespread cultivars were derived from materials
reintroduced from Russia from this breeding program [32–34]. This implies a strongly reduced genetic
variability in cultivated sunflowers in comparison to wild accessions, which colonized and adapted to
multiple different environments [35].

Indeed, modern sunflower cultivars are quite different from wild accessions. They are generally
single-headed, have specific oil profiles, and are dwarf. By the early 1970s, a massive increase in hybrid
seed production occurred due to the availability of different heterotic groups of inbred lines as well as
a system of cytoplasmic male sterility and fertility restoration derived from interspecific crosses with
Helianthus petiolaris [36].

A number of studies have shown that genes affecting branching and other features of
plant architecture, fatty acid biosynthesis, and flowering time were involved in sunflower
domestication [37–42]. Baute et al. [41] analyzed the transcriptomes of wild and cultivated sunflowers
and identified 137 genes associated with domestication and improvement, as indicated by their low
sequence variability in domesticated genotypes compared to wild accessions. As in the previous studies,
genes putatively involved in fatty acid biosynthesis, as well as in branching, were largely represented.

More recently, other authors [43] analyzing transcriptomes of wild and domesticated sunflowers
have identified differential splicing divergence related to domestication, especially through intron
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retention. Differential splicing has been related to genes involved in functions related to seed
development. Many differential splicing patterns in cultivars probably derived from wild accessions,
increasing their frequency because of selection during domestication.

The involvement of variation in the repetitive component, and especially of retrotransposon copy
number, in sunflower domestication was first studied by Mascagni et al. [23]. The sunflower has a
large genome of about 3.6 Gbp [42]. Its repetitive component accounts for around 80% of the genome
and is mostly composed of LTR-REs [44–48], especially of the Gypsy superfamily and Chromovirus
lineage. High levels of LTR-RE-related polymorphism have been found in both wild and cultivated
genotypes [49].

Mobilization and consequent changes in the abundance of retrotransposons have occurred during
Helianthus speciation, even in relatively recent times [50,51]. Sunflower LTR-REs are apparently
transcribed and, although at low rates, reinserted into the genome, even in nonstressful environmental
conditions [52].

In a previous study [23], a library of 123 LTR-retrotransposon sequence families of sunflower
was produced assembling a set of 454 sequence reads of the HA412-HO line using RepeatExplorer
(https://galaxy-elixir.cerit-sc.cz), a repetitive sequence online clustering tool [53]. Each cluster
represents an individual family of repetitive elements, which show large sequence similarity and share
a common progenitor [53]. Mascagni et al. [23] identified clusters belonging to the Gypsy and the
Copia superfamilies (85 and 38 sequence families, respectively). The lineage (indicated as family in
that work) of each cluster was also identified. Different clusters belonging to the same LTR-RE lineage
can be defined as different LTR-RE families of that lineage. Mascagni et al. [23] showed changes in the
abundance of certain lineages of Gypsy and Copia LTR-REs between cultivated and wild genotypes
of sunflower. Moreover, they found differences in LTR-RE number lying proximal to gene coding
sequences among the same genotypes.

Here, we extend the previous study [23], performing a new comparative analysis of LTR-REs
between wild and domesticated genotypes of H. annuus at the family level in order to identify
the involvement of specific LTR-RE families in retrotransposon-related structural variations and
how they define cultivars in comparison to wild plants. Moreover, an analysis of the chromosomal
localization of these LTR-RE families and of their supposed association to gene coding sequences was
conducted, allowing us to hypothesize on the role of such structural variations in the domestication of
the sunflower.

2. Materials and Methods

2.1. Plant Genotypes and Illumina Sequences Used in the Analyses

The sunflower cultivars and wild accessions used in this study were the same used by
Mascagni et al. [23] (Table 1). We selected 7 wild accessions of H. annuus from different regions
of North America, and 8 cultivars randomly selected from different countries in which sunflower seeds
are massively produced, one cultivar per country. Wild accessions and cultivars were obtained from
the United State Department of Agriculture, Agricultural Research Service (USDA-ARS), National
Genetic Resources Program, USA. Further data on the genotypes can be found at the US National
Plant Germplasm System webpage (http://www.ars-grin.gov/npgs/searchgrin.html) and in previous
studies of ours [23,54].

Raw Illumina paired-end sequences from DNA isolated from leaves of single individuals
of each genotype were available at the Sequence Read Archive (SRA) of NCBI (BioProject
number PRJNA302358). Illumina reads were preprocessed [23] to remove Illumina adapters,
then quality-trimmed with default settings, and the lengths of reads were defined at 90 nt.

https://galaxy-elixir.cerit-sc.cz
http://www.ars-grin.gov/npgs/searchgrin.html
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Table 1. Sunflower genotypes used in this study. For each genotype, the United State Department of
Agriculture (USDA) identification code, the area of cultivation for domesticated genotypes, and the
number of reads sequenced by the Illumina technique are reported. Reads were trimmed at 90 nt
and used in analyses as single ends for measuring LTR-retrotransposons (LTR-REs) abundance.
For analyzing the proximity between LTR-REs and genes, paired ends were used and no specific
length was defined.

Type Name Id Code Area of
Cultivation Raw Reads Trimmed Reads

(as Single Ends, 90 nt)
Trimmed Reads
(as Paired Ends)

Domesticated

Hata Ames 22503 Argentina 32,100,390 31,085,284 31,624,960
Dussol Ames 22499 France 25,678,406 24,988,640 25,375,912

Argentario Ames 1842 Italy 10,759,866 10,134,402 10,566,652
Karlik Ames 3454 Spain 23,499,752 22,938,364 23,087,458

Zelenka Ames 22530 Russia 9,048,276 8,824,270 8,858,154
Roman “A” PI531386 Romania 19,408,888 18,621,244 19,095,974

HOPI PI369359 USA 15,768,198 15,254,502 15,437,790
Seneca PI369360 USA 13,911,506 13,334,732 13,667,436

Wild

Arizona (AZ) Ames14400 - 14,641,510 14,013,588 14,357,666
Colorado (CO) PI586840 - 23,335,576 21,965,694 22,916,284

Illinois (IL) PI 435540 - 18,577,580 17,366,768 18,145,470
Kentucky (KY) PI 435613 - 14,853,802 13,845,748 14,580,828

Mississippi (MS) PI 435608 - 22,921,544 21,376,594 22,226,864
North Dakota (ND) PI586811 - 51,681,332 47,906,352 49,574,892
Washington (WA) PI 531018 - 6,996,658 6,479,624 6,724,410

2.2. Long Terminal Repeats-Retrotransposon Redundancy Estimation

A reference library of 11,546 contigs, belonging to 123 LTR-REs families and representative of all
sunflower LTR-Res, was available [23]. This was obtained by graph-based clustering of sequences of
the highly inbred sunflower line HA412-HO using RepeatExplorer [53].

This library was used as reference for mapping Illumina reads of each genotype. Mapping was
carried out using an updated version of CLC-BIO Genomic Workbench (version 9.5.3, CLC-BIO,
Aahrus, Denmark), with the following parameters: mismatch cost = 1, deletion cost = 1, insertion
cost = 1, similarity = 0.9, and length fraction = 0.9.

Using this tool, those reads that match multiple distinct sequences were distributed randomly
and, hence, the number of reads that matched to a single sequence simply gave an indication of its
abundance. However, if all sequences of a sequence family (i.e., sequences that shared sufficient
similarity to form a cluster) were taken together, the total number of mapped reads for that cluster
(compared to the total number of all genomic reads) indicated the effective abundance of that family.
Abundance values were reported as total number of mapped reads per million reads used for mapping.

The occurrence of retrotransposon abundance variation among wild and domesticated genotypes
was estimated by a principal component analysis (PCA) and a permutational multivariate analysis
of variance (PERMANOVA) [55]. For each family, the abundance data on 15 genotypes were used to
build a Euclidean distance matrix. PCA was performed by implementation of R package FactoMineR
version 1.26 [56]; PERMANOVA used R package vegan version 2.0-10 [57]. An in-house R script
was used for performing statistical tests for all the families. Differences between wild and cultivated
genotypes were considered significant when p ≤ 0.01.

2.3. Retrotransposon Distribution along the Sunflower (HanXRQInbred Line) Genome

Using RepeatMasker (http://www.repeatmasker.org), each of the 17 linkage groups (LGs) of the
only currently available sunflower genome sequence—the HanXRQ inbred line [42]—were compared
with the datasets of Gypsy or Copia families, which showed significant differences in abundance
between wild and cultivated genotypes. In addition, the analysis was also performed against a putative
sunflower centromeric sequence—HAG002P01 [58]—separately under default parameters but -div 20.
All LGs were then subdivided into 3-Mbp-long regions using an in-house Perl script. The number of
masked bases was then counted for each 3 Mbp fragment using another in-house Perl script.

http://www.repeatmasker.org
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2.4. Analysis of Proximity of Long Terminal Repeats-Retrotransposons to Genes

For each genotype, a set of Illumina paired-end reads (trimmed for quality and adapters but not
for specific length) was mapped onto a library containing a subset of LTR-RE families, assembled by an
online clustering tool, RepeatExplorer (https://galaxy-elixir.cerit-sc.cz/), which showed differentiating
abundance variation between cultivated and wild genotypes. They were also similarly mapped to a
set of genes representing the whole sunflower transcriptome [59].

Mapping was performed using a Burrows–Wheeler Aligner (BWA) version 0.7.10-r789 [60] with
the following parameters: aln -t 4 -l 12 -n 4 -k 2 -o 3 -e 3 -M 2 -O 6 -E 3. The resulting paired-end
mappings were resolved with the “sampe” module of BWA, and the output was converted into a
“bam” file using SAMtools version 0.1.19 [61]. SAMtools was used to extract the reads mapping in
pairs with the function ”view”, option -F 12.

For each genotype, all read pairs where one read mapped onto a LTR-RE family and the
other onto a gene sequence were selected, and the reads relating to the gene sequences were
collected. Then, the corresponding gene sequences were retrieved from the HanXRQ genome
annotation database (https://www.heliagene.org/HanXRQ-SUNRISE/), and Blast2GO [62] was
used to identify the corresponding Kyoto encyclopedia of genes and genomes (KEGG) pathways
(https://www.genome.jp/kegg/). Significant differences in the number of identified KEGG terms
between cultivars and wild accessions were assessed by PERMANOVA, as described above.

3. Results

3.1. Some Long Terminal Repeats-Retrotransposon Families Show Significant Differences in Abundance
between Wild and Cultivated Genotypes

An estimate of structural variation relating to the mobilization of LTR-REs can be determined
by the increase or decrease of coverage by certain elements in the different genotypes [63]. In our
study, the coverage of each family was determined in seven wild accessions of H. annuus from different
regions of North America, and eight cultivars were randomly selected from different countries in which
sunflower seeds are massively produced, one cultivar per country. In doing so, we were attempting to
get a representative sample of diversity in the domesticated and wild gene pools of H. annuus. In fact,
large genetic diversity among these genotypes has already been assessed using retrotransposon-based
molecular markers [49].

The abundance of each of the 123 LTR-RE families contained in the reference library [23] in each
accession was measured by counting the total number of reads (per million) that mapped onto the
contigs belonging to such families. This method, which assumed that Illumina reads were sampled
with uniform biases (among genotypes of the same species) for particular sequence types, if any,
has been used in many species [64–67], including sunflower [23,46,54,68]. This method was previously
validated by slot blot hybridization for two Helianthus genotypes [54].

Principal component analysis (PCA) of the intraspecific relative abundance of each of the
123 LTR-RE families was performed. No significant abundance variation was observed for the majority
of LTR-RE families (101 out of 123 families). For 22 out of 123 families, wild and cultivated genotypes
showed significant differences (p ≤ 0.01; Figure 1). The abundance values (in millions of mapped reads
per million) for each of the 22 LTR-RE families in the 15 selected genotypes are reported in Table S1.

In eight out of 22 LTR-RE families (seven of the Gypsy-Chromovirus lineage and one
of the Copia-TAR/Tork lineage), the mean abundance was higher in cultivars than in wild
accessions; the opposite trend was observed in the other 14 families (eight Gypsy-Chromovirus,
three Gypsy-Athila, one Copia-Maximus/SIRE, one Copia-Angela, and one Copia-AleII; Figure 2).
The percentage of LTR-RE families in which variation was higher in some lineages (such as
Chromovirus and Athila of the Gypsy superfamily) than in other is shown in Figure 3.

https://galaxy-elixir.cerit-sc.cz/
https://www.heliagene.org/HanXRQ-SUNRISE/
https://www.genome.jp/kegg/
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Figure 1. Principal component analysis (PCA) plots of abundance values of 22 LTR-RE families in
domesticated (white dots) and wild genotypes (grey dots) of Heliantus annuus. The percentage of
variation accounted by each axis is shown. Asterisks indicate permutational multivariate analysis of
variance (PERMANOVA) significance between cultivars and wild accessions: *** p < 0.001; ** p < 0.01.
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Figure 3. Percentage of long terminal repeats-retrotransposons (LTR-RE) families showing significant
differences in abundance between wild and cultivated genotypes, according to the lineage to which
such families belong. For each lineage, the total number of families in the sunflower genome is reported
in parentheses.

3.2. Chromosomal Localization of Long Terminal Repeats-Retrotransposons Families

The 22 LTR-RE families showing significant variation in abundance between wild and cultivated
genotypes were mapped to the only currently available genome sequence of H. annuus (HanXRQ
inbred line [42]) using contigs from each family, though keeping the Gypsy and Copia superfamilies
separated. To structurally describe the 17 linkage groups of the HanXRQ sequence, masking was
also performed using a sequence that was previously described as interspersed, but with a prevalent
centromeric localization by FISH [58], in order to identify putative centromeres.

The localization of 18 Gypsy and four Copia families is reported in Figure 4. No preferential
localization was observed for Copia LTR-RE families, which were interspersed in the genome.
While Gypsy families were also interspersed in the genome, similarly to Copia families, masking data
suggested a preferential localization of Gypsy LTR-REs around putative centromeres in certain LGs
(e.g., LGs I, IV, V, XI, XII, XV). This was consistent with the vast majority of Gypsy families that belong
to the Chromovirus lineage, which has been shown to be involved in centromere structure [69].

3.3. Proximity of Retrotransposons to Genes

To evaluate the potential impact of LTR-RE insertions on overall gene function, we analyzed the
association between sequences belonging to the 22 LTR-RE families showing significant differences in
abundance between wild and cultivated genotypes and protein encoding genes in the genome.
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Figure 4. Distribution of the Gypsy (in green) and Copia (in red) LTR-RE families along the 17 linkage
groups (LGs) of the sunflower genome (line HanXRQ [42]). The distribution of a putative centromeric
sequence ([58], in black) is also reported. Red arrows indicate the most probable centromere position
of each LG, corresponding to the peaks of highest frequency of the putative centromeric sequence.
The space of each LG is proportional to its length in nucleotides.

The proximity of LTR-REs to genes in the wild accessions and in the cultivars of H. annuus was
estimated by mapping Illumina paired-end reads to both the library of 22 differently abundant LTR-RE
families and to a set of sequences representing the whole sunflower transcriptome [59]. The Illumina
paired-end reads of which one mapped onto an LTR-RE and the other onto a gene (hereafter called
gene-RE pairs) were retained from every accession (Table S2). Because of the relatively low number
of genomic reads and to counter random variation, it was decided two groups of sequence would
be created: gene-RE pairs from all wild genotypes and gene-RE pairs from all cultivated genotypes.
In fact, because of the relatively low coverage of genomic reads used in this analysis for each genotype,
any differences between single genotypes could have been determined by the stochasticity in read
packages used for mapping. On the contrary, the effect of stochastic variation was greatly reduced
by pooling all gene-RE pairs of all the wild genotypes and those of all the cultivars. The number of
gene-RE pairs (per million reads) for each RE family in cultivars and wild accessions is reported in
Table 2. On average, families of the Gypsy superfamily showed a higher number of gene-RE pairs
per million reads in wild than in cultivated genotypes; for some families of the Chromovirus and
Athila lineages, such differences were statistically significant (Table 2). By comparison, the number
of gene-RE pairs per million reads did not change when considering LTR-RE families of the Copia
superfamily in the wild and cultivated groupings.

The list of genes lying in proximity to elements belonging to LTR-RE families that showed different
frequencies between cultivated and wild genotypes is reported in Table S3. A few of these genes have
already been reported as being important during sunflower domestication [41] based on their sequence
conservation in domesticated genotypes. Genes in cultivars included sequences for an iron-regulated
protein 3, a protein of the EamA-like transporter family, an O-glycosyl hydrolase, a putative myosin,
and an ATP synthase, subunit β. In wild accessions, sequences included genes for a carbon–sulfur
lyase, a protein of the AMP-dependent synthetase and ligase family, a P-glycoprotein, a protein of the
RING/U-box superfamily, and an RNA polymerase II transcription mediator.

In order to evaluate how such gene products might be involved in biochemical processes
such that LTR-REs insertion could induce phenotypic variation between wild and cultivated
genotypes, we identified the KEGG biochemical pathways of the genes lying near these LTR-REs
(Figure 5). Comparing the percentages of KEGG terms between cultivated and wild genotypes,
significant differences were observed for three biochemical pathways, oxidative phosphorylation,
sulfur metabolism, and cysteine and methionine metabolism (Figure 5).
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Figure 5. Percentages of Kyoto encyclopedia of genes and genomes (KEGG) biochemical pathway
terms associated with gene-RE pairs in cultivars and wild accessions of H. annuus. Asterisks indicate
PERMANOVA significance between cultivars and wild accessions: *** p < 0.001; * p < 0.05.
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Table 2. Mean number (per million reads) of paired reads where one read maps to a LTR-RE family and
the other to a gene sequence. For each family, the lineage and the superfamily are reported. Statistical
significance of differences between cultivars and wild accessions was assessed by PERMANOVA
(*** p < 0.001; * p < 0.05).

Superfamily Lineage Family
Mean nr. of Gene-RE Mapping Paired Reads per Million Reads

Cultivars Wild accessions PERMANOVA

Gypsy Chromovirus CL5 2.95 4.05
Gypsy Chromovirus CL18 1.61 1.64
Gypsy Chromovirus CL25 4.37 6.53 *
Gypsy Chromovirus CL32 1.07 0.80
Gypsy Chromovirus CL35 0.80 0.90
Gypsy Chromovirus CL47 0.84 1.57 ***
Gypsy Chromovirus CL57 0.73 1.04 *
Gypsy Chromovirus CL64 0.47 0.65
Gypsy Chromovirus CL88 0.47 0.81 *
Gypsy Chromovirus CL94 0.25 0.32
Gypsy Chromovirus CL96 0.76 0.82
Gypsy Chromovirus CL102 0.14 0.18
Gypsy Chromovirus CL138 0.17 0.14
Gypsy Chromovirus CL193 0.03 0.05
Gypsy Chromovirus CL232 0.03 0.01
Gypsy Athila CL29 1.16 1.34
Gypsy Athila CL43 1.31 1.90 *
Gypsy Athila CL87 0.42 0.64 *

Mean Gypsy 0.98 1.38

Copia AleII CL48 1.08 1.08
Copia Maximus/SIRE CL115 0.12 0.21
Copia Angela CL100 0.27 0.29
Copia TAR/Tork CL255 0.18 0.17

Mean Copia 0.41 0.44

4. Discussion

It is commonly accepted that only a few loci are involved in the process of domestication of
a species from its wild progenitor [70–73]. This could imply that sequence divergence between
domesticated and wild genotypes might be more pronounced in those few loci that, for example,
might provide characters that are favorable in cultivation but are neutral (or even negatively selected)
in the wild. In these loci, extensive molecular divergence can be observed [74]. In addition, reduction in
population size during artificial selection does contribute to making domesticated and wild genotypes
more divergent [75]. Based on this hypothesis, 122 genes involved in sunflower domestication and
15 genes involved in sunflower cultivar improvement were identified [41].

Although coding sequence variations (and selection of specific alleles) would have played a
major role in the process of domestication, other genetic mechanisms are also likely to have played a
substantial part in this process, for example, differential regulation of gene expression including
processes such as alternative splicing [76]. Recently, Smith et al. [43] showed an association of
alternative splicing of some genes and domestication in sunflower.

Considering that phenotypic changes may arise from changes in the regulation pattern of genes,
which are often derived from variation in neighboring noncoding, cis-regulatory sequences [20,73],
variations in the repetitive component related to retrotransposon insertions/deletions could have had a
primary role in determining the phenotypes that were selected by humans during plant domestication.

In previous experiments [23], significant differences in abundance of certain lineages of Gypsy
and Copia LTR-REs were measured between cultivated and wild genotypes of sunflower. The present
study extends those findings at the retrotransposon family level, showing that 22 of 123 LTR-RE
families were significantly different in abundance between cultivated and wild genotypes. In addition,
within a lineage, some families were significantly more abundant in cultivars, while others were more
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abundant in wild accessions. The level of variation might be related to there being relatively few
genotypes due to initial selection by early European explorers and the breeding program in Russia [27].
If it is assumed that the differences in LTR-RE abundance did not result in favorable traits of selected
and bred genotypes, then the smaller or higher LTR-RE abundance of a specific family in cultivars than
in wild accessions might be a consequence of genetic drift. However, if such changes in abundance of
certain families resulted in favorable traits of those genotypes, it might be deduced that low or high
abundance of certain LTR-RE families were unconsciously selected by the first breeders.

Long terminal repeats-retrotransposons families that showed different abundances between
wild and cultivated plants were mapped to the sequenced inbred line of sunflower [42]. LTR-RE
families were not confined to specific chromosomal regions notoriously filled with repetitive elements;
rather, they were interspersed over all chromosomes. As such, structural variations related to these
LTR-REs also occurred in gene-containing chromosomal regions.

Retrotransposon insertions or deletions may affect the phenotype of the host, especially when
they occur in the proximity to genes whose expression rate they influence [77,78]. Retrotransposons
mobilization may also affect the plant phenotype by modifying the epigenetic setting of the locus.
This is because integration of a retrotransposon is generally accompanied by methylation of the
insertion region, with consequent inactivation of proximal genes [17].

We assessed the occurrence of insertions/deletions in proximity to genes of the 22 LTR-REs
belonging to families whose abundance changed between wild and cultivated sunflowers. Paired reads
where one mapped onto an LTR-RE and the other onto a gene were identified. This indicated the
proximity of LTR-RE insertions to genes they might influence. However, we could not exclude the
possibility that in some cases, these gene sequences might have been unfunctional (e.g., portions of
genes, pseudogenes).

For some LTR-RE families, the level of proximity to genes was significantly different between wild
accessions and cultivars, most notably with families belonging to Chromovirus and Athila lineages of
the Gypsy superfamily.

Interestingly, some of the genes indicated by Baute et al. [41] to be involved in sunflower
domestication and improvement as determined by their sequence conservation, also showed
differences in proximity to LTR-REs between cultivated and wild genotypes. Such differences could
have contributed to the large phenotypic differences between wild and domesticated sunflowers.
Analysis of the biochemical processes of genes with differentiating proximity to LTR-REs between
wild and cultivated genotypes identified at least three important KEGG pathways: oxidative
phosphorylation, sulfur metabolism, and cysteine and methionine metabolism.

Oxidative phosphorylation is a fundamental process in energy metabolism whereby cells oxidize
nutrients, releasing energy for ATP production (see for example Reference [79]).

The sulfur metabolism and related cysteine and methionine metabolism pathways also play an
important role in plants as they are involved in the production of reduced sulfur compounds for the
biosynthesis of S-containing amino acids. These pathways are related to oxidative phosphorylation as
sulfur compound production starts from the activation of sulfate with ATP to form adenylyl sulfate [80].
Among a large range of functions, sulfur-containing defense compounds are crucial for the survival of
plants under abiotic and biotic stresses [81]. During drought stress, sulfur compounds have specific
roles with the biosynthesis of osmolytes and osmoprotectants, such as polyamines, and the production
of glutathione and its precursor cysteine are also increased [82].

A common feature of these biochemical processes is that they participate in some way in the
response of plants to abiotic and biotic stress. It is known that a common trait of domesticated plants is
an increasing susceptibility to environmental stresses [83]. It is possible that retrotransposon mobility
might have affected this trait during sunflower domestication.

In conclusion, our study identified LTR-RE families specifically involved in structural variations
between wild and cultivated sunflower genotypes. Our data suggest that such structural variations
occurred in some cases near coding genes, with possible consequences on their expression and
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consequently on the phenotype. In this sense, the occurrence of LTR-RE-related structural variation
represents a further process that might have affected plant domestication, alongside the selection of
alleles of specific genes. This study indicates what LTR-RE families and what genes should be taken
into account in future studies on the importance of changes in the repetitive fraction of the genome
in sunflower domestication. Resequencing the genome of some domesticated and wild sunflower
genotypes will allow a precise measurement of the extent of LTR-RE-related structural variations
and their localization to specific genes. Expression analysis of such genes will allow the effect of
LTR-RE-related structural variation on the domesticated sunflower phenotype to be defined with
more precision.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/9/433/s1.
Table S1: Number of mapped reads per million reads of 22 LTR-RE families in eightdomesticated genotypes
and seven wild accessions, Table S2: Number of gene-RE mapping paired reads per million reads of 22 LTR-RE
families in eight domesticated genotypes and seven wild accessions, Table S3: List of genes mapped by gene-RE
paired Illumina reads of domesticated (a) and wild (b) genotypes.
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