9,316 research outputs found

    Club Efficiency and Lindahl Equilibrium with Semi-Public Goods

    Get PDF
    Limit core allocations are the ones that remain in the core of a replicated economy. An equivalent notion for economies with public goods is Schweizer's club efficiency. We extend this notion to economies with goods that have a semi-public nature. The notion encompasses purely private as well as purely public club goods as polar cases. We show that given certain conditions the equivalence of club efficient allocations and Lindahl equilibria holds for a wide range of economies with semi-public club goods. We also show that extension to a more general class of economies seems implausible.clubs;club efficiency;Lindahl equilibrium;limit cores

    Lindahl Equilibrium and Schweitzer's Open Club Model Semi-Public Goods

    Get PDF
    Limit core allocations are the ones that remain in the core of a replicated economy.An equivalent notion for economies with public goods is Schweizer s concept of club e ciency under a variable number of economic agents.We extend this notion to economies with goods that have a semi-public nature.We show that given certain conditions the equivalence of club e cient allocations and Lindahl equilibria holds for a wide range of economies with semi-public club goods.We also show that extension to a more general class of economies seems implausible.general equilibrium;public goods;efficiency;allocation

    A unified picture of ferromagnetism, quasi-long range order and criticality in random field models

    Full text link
    By applying the recently developed nonperturbative functional renormalization group (FRG) approach, we study the interplay between ferromagnetism, quasi-long range order (QLRO) and criticality in the dd-dimensional random field O(N) model in the whole (NN, dd) diagram. Even though the "dimensional reduction" property breaks down below some critical line, the topology of the phase diagram is found similar to that of the pure O(N) model, with however no equivalent of the Kosterlitz-Thouless transition. In addition, we obtain that QLRO, namely a topologically ordered "Bragg glass" phase, is absent in the 3--dimensional random field XY model. The nonperturbative results are supplemented by a perturbative FRG analysis to two loops around d=4d=4.Comment: 4 pages, 4 figure

    Two-loop Functional Renormalization Group of the Random Field and Random Anisotropy O(N) Models

    Full text link
    We study by the perturbative Functional Renormalization Group (FRG) the Random Field and Random Anisotropy O(N) models near d=4d=4, the lower critical dimension of ferromagnetism. The long-distance physics is controlled by zero-temperature fixed points at which the renormalized effective action is nonanalytic. We obtain the beta functions at 2-loop order, showing that despite the nonanalytic character of the renormalized effective action, the theory is perturbatively renormalizable at this order. The physical results obtained at 2-loop level, most notably concerning the breakdown of dimensional reduction at the critical point and the stability of quasi-long range order in d<4d<4, are shown to fit into the picture predicted by our recent non-perturbative FRG approach.Comment: 19 pages, 20 figures. Minor correction

    Why does wurtzite form in nanowires of III-V zinc-blende semiconductors?

    Full text link
    We develop a nucleation-based model to explain the formation of the wurtzite (WZ) crystalline phase during the vapor-liquid-solid growth of free-standing nanowires of zinc-blende (ZB) semiconductors. We first show that, in nanowires, nucleation generally occurs at the outer edge of the solid/liquid interface (the triple phase line) rather than elsewhere at the solid/liquid interface. In the present case, this entails major differences between ZB and WZ nuclei. Depending on the pertinent interface energies, WZ nucleation is favored at high liquid supersaturation. This explains our systematic observation of ZB during the early stages of nanowire growth.Comment: 4 pages with 4 figures Submitted to Physical Review Letter

    Spectral cutoffs in indirect dark matter searches

    Full text link
    Indirect searches for dark matter annihilation or decay products in the cosmic-ray spectrum are plagued by the question of how to disentangle a dark matter signal from the omnipresent astrophysical background. One of the practically background-free smoking-gun signatures for dark matter would be the observation of a sharp cutoff or a pronounced bump in the gamma-ray energy spectrum. Such features are generically produced in many dark matter models by internal Bremsstrahlung, and they can be treated in a similar manner as the traditionally looked-for gamma-ray lines. Here, we discuss prospects for seeing such features with present and future Atmospheric Cherenkov Telescopes.Comment: 4 pages, 2 figures, 1 table; conference proceedings for TAUP 2011, Munich 5-9 Se

    Local deformations and incommensurability of high quality epitaxial graphene on a weakly interacting transition metal

    Get PDF
    We investigate the fine structure of graphene on iridium, which is a model for graphene weakly interacting with a transition metal substrate. Even the highest quality epitaxial graphene displays tiny imperfections, i.e. small biaxial strains, ca. 0.3%, rotations, ca. 0.5^{\circ}, and shears over distances of ca. 100 nm, and is found incommensurate, as revealed by X-ray diffraction and scanning tunneling microscopy. These structural variations are mostly induced by the increase of the lattice parameter mismatch when cooling down the sample from the graphene preparation temperature to the measurement temperature. Although graphene weakly interacts with iridium, its thermal expansion is found positive, contrary to free-standing graphene. The structure of graphene and its variations are very sensitive to the preparation conditions. All these effects are consistent with initial growth and subsequent pining of graphene at steps

    Nonperturbative Functional Renormalization Group for Random Field Models. III: Superfield formalism and ground-state dominance

    Full text link
    We reformulate the nonperturbative functional renormalization group for the random field Ising model in a superfield formalism, extending the supersymmetric description of the critical behavior of the system first proposed by Parisi and Sourlas [Phys. Rev. Lett. 43, 744 (1979)]. We show that the two crucial ingredients for this extension are the introduction of a weighting factor, which accounts for ground-state dominance when multiple metastable states are present, and of multiple copies of the original system, which allows one to access the full functional dependence of the cumulants of the renormalized disorder and to describe rare events. We then derive exact renormalization group equations for the flow of the renormalized cumulants associated with the effective average action.Comment: 28 page

    Effects of environmental factors on development of Pyrenopeziza brassicae (light leaf spot) apothecia on oilseed rape debris

    Get PDF
    Publication no. P-2001-0221-01R. This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 2001The development of Pyrenopeziza brassicae (light leaf spot) apothecia was studied on petiole debris from artificially infected oilseed rape leaves incubated at temperatures from 6 to 22 degreesC under different wetness regimes and in 16 h light/8 h dark or continuous darkness. There was no significant difference between light treatments in numbers of apothecia that developed. Mature apothecia developed at temperatures from 5 to 18 degreesC but not at 22 degreesC. The rate of apothecial development decreased as temperature decreased from 18 to 5 degreesC; mature apothecia were first observed after 5 days at 18 degreesC and after 15 days at 6 degreesC. Models were fitted to estimates of the time (days) for 50% of the maximum number of apothecia to develop (t(1); model 1, t(1) = 7.6 + 55.8(0.839)(T)) and the time for 50% of the maximum number of apothecia to decay (t(2); model 2, t(2) = 24.2 + 387(0.730)(T)) at temperatures (T) from 6 to 18 degreesC. An interruption in wetness of the petiole debris for 4 days after 4, 7, or 10 days of wetness delayed the time to observation of the first mature apothecia for approximate to4 days and decreased the number of apothecia produced (by comparison with continuous wetness). A relationship was found between water content of pod debris and electrical resistance measured by a debris-wetness sensor. The differences between values of tl predicted by model 1 and observed values of t(1) were 1 to 9 days. Model 2 did not predict t(2); apothecia decayed more quickly under natural conditions than predicted by model 2.Peer reviewe
    corecore