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1 Club efficiency and Lindahl pricing

It is well known that the classical Debreu-Scarf convergence of the core and the set of

competitive equilibria in a replicated economy with private goods does not extend well to

economies with public goods under the standard concept of blocking. Indeed, the well

known counterexamples to the Edgeworth conjecture demonstrate that, in the absence of

crowding, the per capita cost of supplying a given vector of public goods decreases with

the number of agents, thus rendering small coalitions relatively impotent. There are, in

principle, two basic methods to overcome this difficulty. One consists in switching to

alternative equilibrium concepts, thus ”blowing up” the set of equilibria in order to match

the larger set of core allocations (Mas-Colell, 1980). The other reduces the set of core

allocations by allowing for ”congestion effects” (Roberts, 1974, and Vasil’ev et al., 1995).

This paper belongs to the latter category.

Lindahl equilibrium is a well-known solution concept in thegeneral equilibrium theory

of public goods, but its competitive basis is shaky because of the mismatch with the core.

In this paper we show that if the public goods are not pure but feature some form of rivalry

in terms of opportunity costs, Lindahl pricing within a clubwith a variable membership

base has a firm competitive basis.

We do so in the context of Schweizer’s (1983) model of an open club economy. This

model assumes that the club has a variable membership base, drawn from an unlimited

pool of potential members. The issue of how to partition a given (closed) population of

agents in a number of clubs is not addressed. The possible variation of the numbers of

consumers amounts to replication of the economy and an allocation is now called club

efficient if it cannot be improved upon under varying membershipbases. To explain the

concept further, a membership profile with private and club good consumption plans (for

each type of agents) isfeasibleif the consumption plans can be provided with the initial

endowment of the club members and it isclub efficient if no other feasible membership

profile yields higher utility to all members. Schweizer (1983) showed that a club efficient

allocation must be a competitive, Walrasian equilibrium for an economy with public and

private goods and that agents whose numbers are variable do not and should not pay for the

public good. His results consolidate the limit core theoremand the Henry George theorem,

respectively.1

One of the problems of the original formulation of Schweizer(1983) is that the use of

1It can be shown that club efficiency is equivalent to the Debreu-Scarf limit core property, at least for
economies with purely private goods. An indirect proof can be based on noting that Schweizer (1983) showed
equivalence of the Walrasian equilibrium concept and club efficiency. Debreu and Scarf (1963) showed
equivalence of Walrasian equilibria and the limit core. Hence, club efficiency, the Walrasian equilibrium
concept, and the limit core property are the same.
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a pure public good is unrealistic due to the non-crowding hypothesis. In this paper we try

to remedy this particular problem and introduce intermediate types of goods, denoted as

“club goods.” These club goods can be purely private or purely public or semi-public. We

investigate when a club efficient allocation is a Lindahl equilibrium.

In our formulation crowding does not enter the utility functions directly. The utility

of an agent depends exclusively on his or her own consumptionof private goods and club

goods. The degree of “publicness” of the club goods is determined by the costs of pro-

duction. A cost function expresses the input requirements of a membership profile (the

composition of a club by type of agents) for each level of clubgoods consumption (possi-

bly varying by type of agents). In the polar cases of private and pure public goods, the cost

function is linear and constant, respectively.

The main contribution of this paper is the delineation of cost functions of club goods

such that a club efficient allocation is a Lindahl equilibrium. One may expect toencounter

the membership profile of such a club efficient allocation in an economy with a continuum

of agents, not plagued by integer problems. More interesting, the prices supporting a club

efficient allocation are Lindahl prices.

The public goods literature incorporates a tricky divisionas regards the exogeneity or

endogeneity of the number of consumers and the level of the public goods. In the older

literature, going back to Foley (1970), the number of consumers is fixed and the level of

the public goods is variable. However, the public goods are neither pure nor fixed, but de-

termined by preferences. Foley defined a Lindahl equilibrium as a set of prices, economy-

wide for private goods and individualized for public goods,such that markets clear. He

proceeded to demonstrate that Lindahl equilibria are in thecore. Ellickson (1973) showed

that a Lindahl equilibrium need no longer be in the core when public goods are not pure,

but have opportunity costs that increase with the number of consumers; he also showed

that the core may even be empty. Convexity (in particular of technology) plays no role

in the proof that a Lindahl equilibrium allocation is in the core when crowding is present,

but does play a role in showing that any core allocation is a Lindahl equilibrium allocation

and in showing that the set of core or Lindahl equilibrium allocations is nonempty when

crowding is present. We follow Ellickson in admitting non-pure public goods, but assume

some convexity at the aggregate level of technology to keep scope for positive results.

Milleron (1972) considered a replicated economy with pure public goods. The trou-

ble with pure public goods is that they are not replicated along with the population in the

economy and their per capita opportunity costs vanish. To keep the Lindahl equilibria in

the core, Milleron changed the preferences or endowments ofthe consumers as the econ-

omy becomes large. Even then the core does not shrink to the set of Lindahl equilibria.
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Vasil’ev, Weber, and Wiesmeth (1995) were able to let the core shrink to the set of Lindahl

equilibria, but also had to change the consumers’ utility functions as they were replicated.

Conley (1994) obtained this result assuming that consumers are either asymptotically sa-

tiated or strictly nonsatiated in public goods; these are extreme polar cases of consumer

utility functions. We need no such assumptions in the context of the open club model with

semi-public club goods.

The roles of consumer numbers and public good levels were reversed in Schweizer

(1983). He solved for allocations that included a club membership profile. On the other

hand, he fixed the level of the public goods and devised “Lindahlian” price support of

club efficient allocations, but had to assume that some types of agents are given in fixed

numbers. The other types escape taxation as they can bring inmore members of their types

and, thus, may spread the burden of their collective contribution to the public good. We

follow Schweizer in letting the numbers of consumers be variable, but the public goods

are neither pure nor fixed. At least in principle the use of theopen club model may drive

the main result, that Lindahl equilibria exhaust the core, simply by increasing the set of

Lindahl equilibria, but we do not believe so. The Lindahl equilibria we analyze feature not

only utility maximizing agents, but also profit maximizing club administrators. Members

pay their marginal cost. Hence there are pricing rules for all club goods. The multiplicity

of equilibria is no larger than in the Arrow-Debreu model. The main use of the open

membership base is that the analysis is not plagued by the integer problem.

We look at the provision ofclub goodsthat in principle have asemi-publicnature. It

is assumed that these commodities are provided through the club, and therefore are princi-

pally locally collective. But their rivalry properties might be different from that of a purely

local public good. We model this by means of a cost function that associates input re-

quirements with members’ demands for these club goods. Our main theorem states that

for certain club goods with a semi-public nature the notionsof club efficiency and Lindahl

equilibrium remain equivalent. For this we extend Schweizer’s (1983) equivalence theo-

rem (of Walrasian equilibrium and club efficiency) to a model in which the aggregation

function for the club goods has a certain specification and certain properties. We also show

that it cannot be expected that our Lindahl equivalence result can be extended further to

more general specifications of the aggregation function.

The second section develops the model, Section 3 states and proves our equivalence

result, and Section 4 concludes the paper with a discussion of the result, its relationship to

the literature, and its implications.
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2 Clubs and semi-public club goods

In this section we introduce a model of anopen club economyconsisting of a membership

base, an allocation of private goods consumed, and an allocation of so-called club goods,

which are provided collectively. The membership base as part of our model of a club

represents the “openness” of the club. In our theory we use a club as a replication device.

We consider an economy with a finite set of consumer types denoted byt = 1, . . . ,T. A

vectorn ∈ RT
+

represents aprofileof a coalition of economic agents, comprisingnt members

of type t. A profile n ∈ RT
+

forms the membership base of the club economy. Throughout

we assume that agents of the same type are treated equally, i.e., agents of the same type

consume the same quantities of private as well as club goods.This assumption enables us

to discuss replication properly.2

We consider a situation with̀∈ N private goods. Agents of typet are endowed with a

commodity bundlewt ∈ R`
+
. It is assumed thatwt > 0 for all t.3 Private consumption of an

agent of typet is now given byxt
+ wt ∈ R` wherext denotes the net consumption of type

t. A net consumption plan is now a vector of net consumption bundlesx =
(
x1, . . . , xT

)
∈

R
`T . Total net consumption of private goods in a club with membership basen ∈ RT

+
is

represented byx =
(
n1x1, . . . ,nT xT

)
∈ R`T .

There arem ∈ N club goods. Each club good is provided collectively by the club

to its members. Again assuming equal treatment, an agent of type t now consumes the

club goods at levels given by a vectoryt ∈ Rm
+
. The consumption plan for club goods is

represented by the vectory =
(
y1, . . . , yT

)
∈ RmT

+
. Total consumption of club goods in a

club with membership basen ∈ RT
+

is now represented byy =
(
n1y1, . . . ,nTyT

)
∈ RmT

+
. The

premise of this paper is that the total consumption of club goods (by type) determines cost.

Cost must be a function of the product of population and the bundle consumed by each

type. This functional form specification paves the way for the competitive foundation of

Lindahl prices. This is formalized as follows.

Modelling hypothesis

The production technology is represented by the induced cost functionC:RmT
+
→ R`

+
which

for every membership basen ∈ RT
+

and consumption plany ∈ RmT
+

assigns to the total

consumption bundley =
(
n1y1, . . . ,nTyT

)
∈ RmT

+
a bundle of private goodsC (y) ∈ R`

+
that

is used to create the club goods at these levels.4

The modelling hypothesis equates the marginal cost of a member with the marginal cost

2In the standard model of a replicated pure exchange economy,the equal treatment property can be shown
to hold if preferences are strictly convex (Debreu and Scarf, 1963).

3Here we definewt > 0 if wt = 0 andwt
, 0.

4We may allow substitution of inputs by generalizingC to a correspondence.
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of his or her club bundle. Hence entry fees or subsidies depend only on the consumption

bundle of a particular type. This is the quintessence of Lindahl prices and explains why

they can support a club efficient allocation.

This framework, however, encompasses a number of interesting cases. The club goods

have apurely privatenature ifC (y) = C̃
(∑T

t=1 ntyt
)
, where the cost functioñC : Rm

+
→ R`

+

represents a standard private goods production technologyconverting thè private good

inputs intom private good outputs. (This reduces the model to the standard setting of a

pure exchange economy.)

Second, the club goods have apurely publicnature in the sense of Schweizer (1983) if

C (y) = Z ∈ R`
+

for everyy ∈ RmT
+

, whereZ is some fixed input vector.

Finally, there are many intermediate possibilities, giving the club goods asemi-public

nature. For example, ifC(y) = C̃(maxt=1,...,T ntyt), where the max operator onRm is defined

by maxi(y1, y2) = max(y1
i , y

2
i ), i = 1, ...,m, and, as before,̃C : Rm

+
→ R`

+
represents a

standard private goods production technology, we can interpret the club goods to be based

on a fixed infrastructure such as a network. The capacity of the network has to handle the

peak demands, which in turn determines the construction costs. A contemporary example

of such a situation is that of the provision of access to Internet through a so-called “Internet

Service Provider” (ISP). One can interpret an ISP as a club that provides access to Internet

services to their members. The cost functionC̃ introduced here exactly represents the cost

structure for such an ISP. Capacity of the ISP’s server needs to be based on peak demands

for Internet access at the different time moments during a standard period of time. These

time moments can be represented by the discrete parametert.

These examples feature an important commonality, namely convexity. In the purely

public case in the sense of Schweizer, the induced cost function C is constant, which is

obviously convex. In the purely private and semi-public cases,C is induced by a private

goods cost functioñC. If C̃ is convex, as is standard in neoclassical production theory

(excluding increasing returns to scale in production), then so isC in either case, as the

latter is the composition of̃C and either summation (of private goods) or maximization (of

semi-public goods).

A club is now introduced as a tuple
(
nt, xt, yt)

t=1,...,T , wheren =
(
n1, . . . ,nT

)
∈ RT

+
is a

profile, x =
(
x1, . . . , xT

)
∈ R`T a net private consumption plan, andy =

(
y1, . . . , yT

)
∈ RmT

+

is a club good consumption plan. A club
(
nt, xt, yt)

t=1,...,T is feasibleif

T∑

t=1

ntxt
+C
(
n1y1, . . . ,nTyT

)
5 0. (1)

Net demands for the private goods and the costs for the provision of the club goods sum to
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zero at most.5 For simplicity, there is no production of private goods. Itsinclusion would

be a straightforward extension of the model.

A consumer of typet has an extended utility functionU t : R` × Rm→ R over his total

private and club good consumption. However, since his initial endowmentwt is fixed, we

may simply writeU t(xt, yt). In principle we allow an agent to have short positions in all

commodities.

Next we introduce our main efficiency concept. Consider two feasible clubs given by

(nt, xt, yt)t=1,...,T and (nt
0, x

t
0, y

t
0)t=1,...,T . The club (nt, xt, yt)t=1,...,T is an improvementover the

club (nt
0, x

t
0, y

t
0)t=1,...,T if

U t(xt, yt) > U t(xt
0, y

t
0) for everyt with nt > 0.

Following Schweizer (1983), if no such improvement exists for a club (nt
0, x

t
0, y

t
0)t=1,...,T ,

then (nt
0, x

t
0, y

t
0)t=1,...,T is calledclub efficient.

A feasible club (nt
0, x

t
0, y

t
0)t=,...,T is a Lindahl equilibriumif there exist a private goods

price vectorp ∈ R`
+

and personalized admission price vectorsp1, . . . , pT ∈ Rm
+

such that

the following conditions are satisfied:

(i) For everyt ∈ {1, . . . ,T} with nt
0 > 0 the allocation satisfies the consumer utility

maximization condition

(xt
0, y

t
0) = argmaxU t(xt, yt) subject topxt

+ ptyt
5 0.

(ii) The club (nt
0, x

t
0, y

t
0)t=,...,T satisfies a budget balance condition, i.e.,

T∑

t=1

nt
0 ptyt

0 = p C
(
n1

0y
1
0, . . . ,n

T
0 yT

0

)
.

(iii) The club (nt
0, x

t
0, y

t
0)t=,...,T is optimal in the sense that for every alternative club

(nt, xt, yt)t=1,...,T

T∑

t=1

nt ptyt
5 p C

(
n1y1, . . . ,nTyT

)
.

By the first condition, consumers maximize their utility given the market prices for the

private goods and the personal admission prices for the semi-public club goods. The fees

collected cover the costs of the provision of the club goods by the second condition. The

5We remark that Schweizer (1983) introduces a given endowment for the club, denoted byF = 0, that
covers the provision costs of the public goods and the net demands for private goods. In that case, in equation
(1) the zero is replaced byF. Here we limit our discussion to the case without such an endowment.
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third condition stipulates that a public administration isin charge of the provision of the

club goods and admission prices, and as such has the objective to maximize its “profits.”

(This maximal profit is zero by the second condition.) This condition is not included here

because we consider the number of consumers to be exogenous.(See Foley, 1970, and

other papers referenced in Section 1.) However, since our theorem will entail that club

efficiency implies Lindahl pricing, the result is only strengthened by the inclusion of the

third condition in the definition of Lindahl equilibrium.

3 A decentralization result

Relatively little is assumed to arrive at complete decentralization of efficient clubs through

appropriate price systems. Following Foley (1970) and Schweizer (1983), positivity of

prices is ensured to render a complete decentralization through Lindahl pricing.

Axiom.

(a) For every typet = 1, ...,T the utility functionU t is assumed to be continuous, quasi-

concave, and strongly monotonic.

(b) The club good production technology is convex in the sense that the cost function

C : RmT
+
→ R`

+
is convex.

In the context of this assumption we have the following result.

Theorem. Under the properties stated in the Axiom, every efficient club (nt
0, x

t
0, y

t
0)t=1,..,T

with a strictly positive endowment,
∑

t=1 nt
0w

t À 0, can be supported as a Lindahl equilib-

rium with strictly positive prices.

Proof. Let the club (nt
0, x

t
0, y

t
0)t=1,...,T be efficient.

We construct the following sets. First, for everyt ∈ T we define the preferred set,

Bt
=

{(
xt,0, . . . ,0, yt,0, . . . ,0

) ∣∣∣U t (xt, yt) > U t (xt
0, y

t
0

)}
⊂ R` × RmT

+
.

In this definition we letyt be at location 1+ t.

Now for any profilen ∈ RT
+

we define the preferred set,

Bn =

T∑

t=1

ntBt
=




T∑

t=1

ntxt,n1y1, . . . ,nTyT



∣∣∣∣∣∣∣
U t (xt, yt) > U t (xt

0, y
t
0

)
for all t

 .

Finally, we let6

B = ∪
{
Bn

∣∣∣ n ∈ RT
+

such thatn > 0
}
⊂ R` × RmT

+
.

6See footnote 3 for the vector inequality notation.
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Second, we introduce the feasible set,

D =


(
−C
(
n1y1, . . . ,nTyT

)
− z,n1y1, . . . ,nTyT

)
∣∣∣∣∣∣∣

n > 0, z ∈ R`
+
,

y1, . . . , yT ∈ Rm
+

 .

We remark that alsoD ⊂ R`+mT.

Bt is convex by quasi-concavity ofU t for every typet. It follows thatBn is convex for

eachn. BecauseλBn + (1 − λ)B̂n = Bλn+(1−λ)̂n for λ ∈ [0,1] , it follows that the setB is

convex. Furthermore, from continuity ofU t for every typet the setB is open inR` × RmT
+

.

We show thatD is convex. Let (y1, . . . , yT , z,n) and (̂y1, . . . , ŷT , ẑ, n̂) constitute (but

not be) members ofD. Define v =
(
n1y1, . . . ,nTyT

)
and v̂ =

(
n̂1̂y1, . . . , n̂T ŷT

)
. Then

(−C (v) − z, v) ∈ D as well as
(
−C
(̂
v
)
− ẑ, v̂

)
∈ D.

Now considerλ ∈ [0,1]. We have to show that there exists a tuple (˜y1, . . . , ỹT , z̃, ñ) such

that (−C (ṽ) − z̃, ṽ) ∈ D whereṽ =
(
ñ1ỹ1, . . . , ñT ỹT

)
, ṽ = λv + (1− λ) v̂, andC (ṽ) + z̃ =

λ (C (v) + z) + (1− λ)
(
C
(̂
v
)
+ ẑ
)
. This can be accomplished by selecting ˜yt

= λntyt
+

(1− λ) n̂t̂yt for everyt, ñt
= 1, and

z̃= λC (v) + (1− λ) C
(̂
v
)
−C (ṽ) + λz+ (1− λ) ẑ.

Now ṽ = λv+ (1− λ) v̂ and by convexity of the cost functionC it follows that

z̃ = λC (v) + (1− λ) C
(̂
v
)
−C (ṽ) + λz+ (1− λ) ẑ

= C
(
λv+ (1− λ) v̂

)
−C (ṽ) + λz+ (1− λ) ẑ

= λz+ (1− λ) ẑ.

Hence,z̃= 0 and thus indeed(−C (ṽ) − z̃, ṽ) ∈ D, finishing the proof thatD is convex.

We define the cone generated by the feasible setD by

D = {λd |d ∈ D andλ = 0} .

By convexity ofD it follows thatD is a convex cone.

We claim thatB andD do not intersect. Suppose to the contrary that
(
nt, xt, yt)

t=1,...,T

constitutes a member ofB,
(̂
nt, ŷt)

t=1,...,T andẑ ∈ R`
+

constitute a member ofD, andλ = 0

such that


T∑

t=1

ntxt,n1y1, . . . ,nTyT

 =
(
−λC

(
n̂1ŷ1, . . . , n̂T ŷT

)
− λ̂z, λ̂n1ŷ1, . . . , λ̂nT ŷT

)
.

If λ > 0, it follows that̂nt̂yt
=

nt

λ
yt and that

T∑

t=1

nt

λ
xt
= −C

(
n1

λ
y1, . . . ,

nT

λ
yT

)
− ẑ5 −C

(
n1

λ
y1, . . . ,

nT

λ
yT

)
.
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This implies that the club
(

nt

λ
, xt, yt

)
t=1,...,T

is feasible and improves upon the club(
nt

0, x
t
0, y

t
0

)
t=1,...,T

. Since this contradicts the efficiency hypothesis, it follows thatλ = 0

and the only conceivable intersection point ofB and D is the origin. However, sinceB

is open inR` × RmT
+

, a perturbation of the origin to the left, with the first (`-dimensional)

component slightly negative, would still belong toB. By construction ofD and D, the

perturbation would also belong toD, contradicting that the origin is the only conceivable

intersection point. Hence the intersection is empty.

By the separating hyperplane theorem and the fact thatD is a cone, there existp ∈ R`
+

andp1, . . . , pT ∈ Rm
+

not all equal to zero such that

(p, p1, . . . , pT)B = 0 = (p, p1, . . . , pT)D. (2)

By strong monotonicity ofU t it can be concluded thatB is comprehensive, and therefore

(p, p1, . . . , pT) > 0. It must value(−C (v) , v) ∈ D nonpositively: (p1, . . . , pT)v 5 pC(v) for

all v = 0. Sincep = 0 would imply (p, p1, . . . , pT) = 0, we must havep > 0. Also, by

assumption that the aggregated total endowment is strictlypositive, we may conclude that
∑

nt
0pwt > 0. Thus, there is a typet with nt

0 > 0 andpwt > 0. For this typet an interior

consumption plan is feasible with respect topxt
+ ptyt 5 0. Hence, by strong monotonicity

and continuity ofU t, using a standard argument,p À 0 as well aspt À 0. Hence, by

nonzero endowment assumption,pwt > 0 for all t. By the same argument, allpt À 0. We

will now prove that these prices constitute a Lindahl equilibrium.

First, we show the consumer’s utility maximization condition. Suppose that the tu-

ple given by (xt,0, . . . ,0, yt,0, . . . ,0) — with yt at location 1+ t — satisfiesU t(xt, yt) >

U t(xt
0, y

t
0). In fact, sincepÀ 0, pwt > 0, and the utility function is strongly monotonic and

continuous, the same holds for a pair of slightly smaller vectors. Now from the separation

property (2) and the strict positivity of all prices it is concluded thatpxt
+ ptyt > 0.

It remains to show that (xt
0, y

t
0) satisfies the budget conditionpxt

0 + ptyt
0 = 0 if nt

0 > 0.

Indeed from the feasibility condition for
(
nt

0, x
t
0, y

t
0

)
t=1,...,T

it follows that there is somez ∈
R
`
+

such that


T∑

t=1

nt
0xt

0,n
1
0y

1
0, . . . ,n

T
0 yT

0

 =
(
−C
(
n1

0y
1
0, . . . ,n

T
0 yT

0

)
− z,n1

0y
1
0, . . . ,n

T
0 yT

0

)
∈ D.

From the separation property (2) it then follows that
T∑

t=1

nt
0pxt

0 +

T∑

t=1

nt
0ptyt

0 =

T∑

t=1

nt
0

(
pxt

0 + ptyt
0

)
5 0. (3)

By strong monotonicity
(
xt

0,0, . . . ,0, y
t
0,0, . . . ,0

)
belongs to the boundary ofBt ⊂ B. From

(2) it immediately follows thatpxt
0+ ptyt

0 = 0. Hence, each term in (3) must be zero. Since

nt
0 = 0 for all typest it now immediately can be concluded thatpxt

0 + ptyt
0 = 0 if nt

0 > 0.
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Together with previously shown statement, this proves that(xt
0, y

t
0) indeed solves the

consumer’s problem ifnt
0 > 0.

Second, we consider the financial balance condition. Since,as shown above, each term

in (3) must be zero, it follows immediately that

T∑

t=1

nt
0ptyt

0 = −
T∑

t=1

nt
0pxt

0 = pC
(
n1

0y
1
0, . . . ,n

T
0 yT

0

)
, (4)

where the last equality reflects the fact that the feasibility constraint is binding, using strong

monotonicity.

Finally, we consider the problem of the public administration. Since the prices valueD

nonpositively, we have that

T∑

t=1

nt ptyt − p C
(
n1y1, . . . ,nTyT

)
5 0.

This proves that (y1
0, . . . , y

T
0 ,n0) indeed solves the public administration’s problem.

This completes the proof of the theorem. ¥

The converse of the theorem also holds. The proof is an easy adaptation of Schweizer’s

(1983) proof of his second theorem. Thus, we have a true equivalence result.

The implementation of more general club good cost functionsis probably very hard,

if not impossible. In the next example we consider a cost function that is more general,

but fails to lead to equivalence of the set of efficient clubs and the set of Lindahl equi-

libria. Semi-public goods, as we defined them, have a distinct structure in that only total

consumption by type,y = (n1y1, ...,nTyT) ∈ RmT
+
, affects their provision. In general, a club

with profile n and club goods demandsy may impose resource requirements in a way that

is not separable by type.

Counterexample. Consider an economy setting with one private and one club good, i.e.,

` = m= 1, and two types of consumers, i.e.,T = 2, with the following utility functions:

U1 (x, y) = min(2x+ 4, y);

U2 (x, y) = min(2x+ 3,2y).

Now consider a production structure for the club good that does not satisfy the functional

form considered in our model. The cost function is given by

C
(
n1,n2, y1, y2

)
= max

t∈{1,2}
nt · max

t∈{1,2}
yt.

This cost function can be interpreted as representing a semi-public good of which the pro-

vision is based on the maximal consumption capacity requested, where the maximal ca-

pacity is maxnt. This cost function is convex, but here costs are not a function of the total
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consumption of club goods by type,n1y1, . . . ,nTyT . The trade-off within types between

members and mean consumption does not hold. Total consumption of the club goods by

type is shown to be an insufficient statistic for core equivalence.

Consider the club given byn0 = (1,1), x1
0 = x2

0 = −1, andy1
0 = y2

0 = 2. This club is

efficient, as we demonstrate first.

We show thatU2 cannot be lifted over its club level, 1, whenevern2 > 0, U1 = 2, and fea-

sibility is fulfilled. Invoking linear homogeneity with respect ton, feasibility now requires

n1x1
+ x2
+max(n1,1) ·max(y1, y2) 5 0.

Hence,

x2
5 −n1x1 −max(n1,1) · y1.

Substitutingx1 = −1 andy1 = 2 (both fromU1 = 2) obtains

x2
5 n1 − 2 max(n1,1) 5 −1.

Hence,U2(x2, y2) 5 1, proving club efficiency.

This utility level is obtained only ifn1
= 1 and the feasibility constraint is binding:

x1
0 + x2

0 +max(y1
0, y

2
0) = 0.

Now suppose that there is a Lindahl pricep. Substituting the Lindahl break-even constraint

for the semi-public goods, the sum of the consumers’ budgetsis zero. Since each of these

budgets is nonpositive, they are all zero. Better clubs must be priced higher, hence posi-

tively. But this is not so. Indeed, consider any club withn arbitrary and (x1, y1) = (−1,2).

Now (x2, y2) = (−1/2,1) and, therefore, a consumer of type 2 prefers this club to the orig-

inal one. This consumption bundle is half of the club-efficient bundle, (x2
0, y

2
0) = (−1,2),

which has zero value. This implies that it is affordable. This in turn implies that the efficient

club cannot be supported as a Lindahl equilibrium. ¥

4 Discussion

Our theorem provides price support to club allocations thatcannot be improved upon.

These prices are linear, unlike Mas-Colell’s (1980) personalized price schedules — ex-

tended to economies with multiple private goods by Diamantaras and Gilles (1996) and to

club economies by Gilles and Scotchmer (1997) — or the admission fees or “wages” used

by Barham and Wooders (1998). The theorem and its proof are adaptations of Schweizer’s

(1983) theorem on club efficient allocations. He obtains the Henry George Theorem for

11



economies with fixed public goods and associated inputs and,if the latter are zero, the

welfare and core limit theorems. In the present paper, club goods are not exogenous, but

endogenous, namely the outcome of competition among utility maximizers. Moreover, in

principle these club goods are not purely public, but semi-public.

It is well known that there is no competitive basis for Lindahl equilibria in pure pub-

lic goods economies (Milleron, 1972, and Bewley, 1981). Wooders (1978) has conjec-

tured that the core shrinks when there is crowding, but Conleyand Wooders (1997) show

that the second welfare theorem is generally false. Barham and Wooders (1998) provide

useful relationships between optima and competitive equilibria, but all these papers con-

cern economies with only one private and one public good. In these papers, the private

good required to providen members withy units of the public good is given byC(n, y)

and utility features a congestion argument represented byU(x, y,n). Now the reduced

form is given byU(x − C(n, y)/n, y,n). Wooders (1978, page 336) assumes that the best

value with respect toy is maximized further for two consecutive integer values ofn. In

other words, the expression (maximized with respect toy) is assumed locally constant

in n. This constitutes a knife-edge, joint assumption onC and U. Now in this paper

we have essentially absorbed the (utility) congestion argument in the costs. Denoting

the resulting cost and utility functions bỹC and Ũ, respectively, the relation becomes

U(x − C(n, y)/n, y,n) = Ũ(x − C̃(n, y)/n, y). By the envelop theorem, the maximum with

respect toy is locally constant with respect ton if C̃(n, y)/n) is locally constant with respect

to n. This impliesC̃(n, y) = n·c(y). Our modelling hypothesis, however, is̃C(n, y) = C(ny).

Wooders’ and our approaches are consistent if the per capitacost functionc (which includes

the congestion costs) features constant returns to scale.

For economies with multiple private and public goods, Conley(1994) conjectures that

the core of a public goods economy converges only in the knife-edge case in which the

increasing returns to coalitional size are precisely offset by crowding, diminishing marginal

returns in production, or something similar. In a sense, we have articulated this intuition.

For example, if the public goods function isC(ny) = F + (ny)2 (everything scalar), then

club efficiency brings about the efficient scale of production,n0y0 =
√

F, an argument that

extends to more general production possibilities.

An alternative model of an economy with multiple public goods such that the Lin-

dahl equilibrium emerges, has been undertaken by Vasil’ev,Weber, and Wiesmeth (1995).

That paper uses an alternative core concept based on utilitylevels of members of blocking

coalitions depending on the replica size and the coalition structure. The comparison is as

with Wooders and co-authors, without the congestion argument in the costs and withnT-

dimensional (the number of types). For one type the reduced form readsU(x−C(y)/n, y,n)
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and we may absorb the (third) congestion argument in the costs. Although our approach

to club goods may seem different, the two approaches are closely related, in the sense that

the opportunity cost of individual public — or club — goods consumption is not reduced

with the size of the economy in either model. From this perspective the contribution of our

paper is a demonstration that Schweizer’s theorem encompasses the core limit theorem of

Vasil’ev, Weber, and Wiesmeth (1995).

The just mentioned replication literature has attempted toprovide a competitive basis

for Lindahl equilibria by modelling congestion on the demand side, while we have put

congestion on the supply side. In a way this is a return to the intuition of Ellickson (1973,

p. 417): what matters is the convexity of the aggregate technology set. When the number

of consumers varies freely, the convexity ensures that any core allocation is a Lindahl

equilibrium, provided that cost is a function of the productof the subpopulation of each

type and the club bundle they consume. Then Lindahl prices also represent the marginal

effect of adding another person of a given type to the club. This explains when and why

Lindahl equilibria have a competitive basis in economies with semi-public goods.
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