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economy. An equivalent notion for economies with public goods is Schweizer’s
concept of club efficiency under a variable number of economic agents. We
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1 Club efficiency and Lindahl pricing

Lindahl equilibrium is a well-known solution concept in the general equilibrium theory

of public goods, but its competitive basis has been questioned. In this paper we show

that if the public goods are not pure but feature some form of rivalry in terms of

opportunity costs, Lindahl pricing within a club with a variable membership base

has a firm competitive basis.

We will do so in the context of Schweizer’s (1983) model of club efficiency. This

model assumes that the club is “open” and has a variable membership base, drawn

from an unlimited pool of potential members in the background. The issue of how

to partition a given population of agents in a number of clubs is not addressed.

The possible variation of the numbers of consumers amounts to replication of the

economy and the club efficiency of an allocation indicates that the latter remains

in the core. To explain the concept, a membership profile with private and club

good consumption plans (for each type of agents) is feasible if the consumption plans

are producible with the initial wealth of the club members and it is club efficient if

no other feasible membership profile yields higher utility to all members. Schweizer

(1983) shows that a club efficient allocation must be a Walrasian equilibrium for an

economy with private goods and that agents whose numbers are variable do not and

should not pay for any public good. These results consolidate the limit core theorem

and the Henry George theorem, respectively.

One of the problems of the original formulation of Schweizer (1983) is that the

use of a pure public good is unrealistic due to the non-crowding hypothesis. In this

paper we try to remedy this particular problem and introduce intermediate types of

goods. We investigate when a club efficient equilibrium is a Lindahl equilibrium.

Crowding does not enter the utility functions directly. The utility of an agent de-

pends exclusively on his or her own consumption of private goods and club goods. The

degree of “publicness” of club goods is determined by the costs of production. A cost

function expresses the input requirements of a membership profile (the composition

of a club by type of agents) for each level of club goods consumption (possibly varying

by type of agents). In the polar cases of private and public goods, the cost function

would be linear or constant, respectively. The main contribution of this paper is the

delineation of cost functions of club goods such that a club efficient allocation is a

Lindahl equilibrium. One may expect to encounter the membership profile of such a

club efficient allocation in an economy with a sea of agents, not plagued by integer

problems. More interesting, the prices of a club efficient allocation are Lindahl prices.

It can be shown that the Debreu-Scarf limit core property, the Walrasian equilibrium
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concept, and club efficiency are equivalent for economies with purely private goods.1

The public goods literature knows a tricky division as regards the exogeneity or

endogeneity of the number of consumers and the level of the public goods. In the

older literature, going back to Foley (1970), the number of consumers is fixed and

the level of the public goods is variable. He defined a Lindahl equilibrium as a set of

prices, economy-wide for private goods and individualized for public goods, such that

markets clear. Foley proceeded to demonstrate that Lindahl equilibria are in the core.

Ellickson (1973) showed that a Lindahl equilibrium need no longer be in the core when

public goods are not pure, but have opportunity costs that increase with the number

of consumers; he also showed that the core may even be empty. His negative results

stem directly from the fact that the aggregate technology set may not be convex. We

follow Ellickson in admitting non-pure public goods, but the aggregate technology will

be assumed convex, keeping scope for positive results. Milleron (1972) replicated the

number of consumers, which remains exogenous. The trouble with pure public goods

is that they are not replicated and their per capita opportunity costs vanish. To keep

the Lindahl equilibria in the core, Milleron changed the preferences or endowments of

the consumers as the economy becomes large. Even then the core did not shrink to

the set of Lindahl equilibria in his paper. Vasil’ev, Weber, and Wiesmeth (1995) were

able to let the core shrink to the set of Lindahl equilibria, but also had to change

consumers (in fact, their utility functions) as they were replicated. Conley (1994)

obtained this result assuming that consumers are either asymptotically satiated or

strictly nonsatiated in public goods; these are extreme polar cases of consumer utility

functions. We need no such assumptions in the context of semi-public goods.

The roles of consumer numbers and public good levels were reversed in Schweizer

(1983). He solved for club allocations, including a membership profile. On the other

hand, he fixed the level of the public goods, not necessarily at a desired level. He

provided “Lindahlian” price support of club efficient allocations, but had to assume

that some types of agents are given in fixed numbers. The other types escape taxation

as they can bring in more members of their types and, thus, may spread the burden of

a contribution to the pure public good. We follow Schweizer in letting the numbers

of consumers be free, but the public goods will be neither pure nor fixed, and be

determined by preferences.

We look at the provision of club goods with a semi-public nature. Such goods are

1An indirect proof can be based on noting that Schweizer (1983) showed equivalence of the
Walrasian equilibrium concept and club efficiency. Debreu and Scarf (1963) showed equivalence of
Walrasian equilibria and the limit core. Hence, club efficiency, the Walrasian equilibrium concept,
and the limit core property are the same.
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commodities of an intermediate nature. It is assumed that these commodities are

provided through a club, and therefore are principally locally collective. But their

rivalry properties might be different from that of a purely local public good. We

model this by means of a cost function that associates input requirements with mem-

bers’ demands for these club goods. Our main theorem states that for certain club

goods with a semi-public nature the notions of club efficiency and Lindahl equilib-

rium remain equivalent. For this we extend Schweizer’s (1983) equivalence theorem

(of Walrasian equilibrium and club efficiency) to a model in which the aggregation

function for the club goods has a certain specification and certain properties. We also

show that it cannot be expected that our Lindahl equivalence result can be extended

further to more general specifications of the aggregation function.

The second section develops the model, Section 3 states and proves our equiva-

lence result, and Section 4 concludes the paper with a discussion of the result, its

relationship to the literature, and its implications.

2 Clubs and semi-public club goods

In this section we introduce a model of a club consisting of a variable membership

base, an allocation of private goods consumed, and an allocation of so-called club

goods, which are provided collectively. In our theory we use a club as a replication

device discussed in the previous section.

We consider an economy with a finite set of consumer types denoted by t =

1, . . . , T . A vector n ∈ RT
+ represents a profile of a coalition of economic agents,

comprising nt members of type t. A profile n ∈ RT
+ forms the membership base of a

club. Throughout we assume that agents of the same type are treated equally, i.e.,

agents of the same type consume the same quantities of private as well as club goods.

This assumption enables us to discuss replication properly. In the standard model of

a replicated pure exchange economy, the equal treatment property can be shown as

a proposition (Debreu and Scarf, 1963).

We consider a situation with ` ∈ N private goods. Agents of type t are endowed

with a commodity bundle wt ∈ R`
+. It is assumed that wt > 0 for all t.2 Private

consumption of an agent of type t is now given by xt + wt ∈ R` where xt denotes

the net consumption of type t. A net consumption plan is given by a vector of net

consumption bundles x =
(
x1, . . . , xT

)
∈ R`T . Total consumption of private goods in

a club with membership base n ∈ RT
+ is represented by x =

(
n1x1, . . . , nT xT

)
∈ R`T

+ .

2This means wt = 0, but wt 6= 0.
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There are m ∈ N club goods. Each club good is provided collectively by the club

to its members. Again assuming equal treatment, an agent of type t now consumes

the club goods at levels given by the vector yt ∈ Rm
+ . The consumption plan for

club goods is represented by the vector y =
(
y1, . . . , yT

)
∈ RmT

+ . Total consumption

of club goods in a club with membership base n ∈ RT
+ is now represented by y =(

n1y1, . . . , nT yT
)
∈ RmT

+ .

The nature of the club goods is introduced through the production technology

used for their creation. The production technology is represented by the induced cost

function C : RmT
+ → R`

+ which for every membership base n ∈ RT
+ and consumption

plan y ∈ RmT
+ assigns to the total consumption bundle y =

(
n1y1, . . . , nT yT

)
∈ RmT

+

a bundle of private goods C (y) ∈ R`
+ that is used to create the club goods at these

levels.3 Notice that the membership base and the consumption plan are combined

into the total consumption bundle. Only when costs follow this reduced form, our

analysis applies.

Still, we encompass a number of interesting cases. The club goods have a purely

private nature if C (y) = C̃
(∑T

t=1 ntyt
)
, where the cost function C̃ : Rm

+ → R`
+

represents a standard private goods production technology converting the ` private

good inputs into m private good outputs. (This reduces the model to the standard

setting of a pure exchange economy.)

Second, the club goods have a purely public nature in the sense of Schweizer (1983)

if C (y) = Z ∈ R`
+, where Z is some fixed input vector.

Finally, there are many intermediate possibilities, giving the club goods a semi-

public nature. For example, if C(y) = C̃(maxt=1,...,T ntyt), where the max operator on

Rm is defined by maxi(y
1, y2) = max(y1

i , y
2
i ), i = 1, ...,m and, as before, C̃ : Rm

+ → R`
+

represents a standard private goods production technology, we can interpret the club

goods to be based on a fixed infrastructure such as a network. The capacity of the

network has to handle the peak demands, which in turn determines the construction

costs. A contemporary example of such a situation is that of the provision of access

to Internet through a so-called “Internet Service Provider” (ISP). One can interpret

an ISP as a club that provides access to Internet services to their members. The

cost function C̃ introduced here exactly represents the cost structure for such an ISP.

Capacity of the ISP’s server needs to be based on peak demands for Internet access

at the different time moments during a standard period of time. These time moments

can be represented by the discrete parameter t.

These examples feature an important commonality, namely convexity. In the

3We may allow substitution of inputs by generalizing C to a correspondence.
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purely public case in the sense of Schweizer, the induced cost function C is constant,

which is obviously convex. In the purely private and semi-public cases, C is induced

by a private goods cost function C̃. If C̃ is convex, as is standard in neoclassical

production theory (excluding increasing returns to scale in production), then so is C

in either case, as the latter is the composition of C̃ and either summation (of private

goods) or maximization (of semi-public goods). The latter two operations are convex

and the composition of convex operations is convex.

A club is formally introduced as a tuple (nt, xt, yt)t=1,...,T , where n =
(
n1, . . . , nT

)
∈

RT
+ is a profile, x =

(
x1, . . . , xT

)
∈ R`T a net private consumption plan, and y =(

y1, . . . , yT
)
∈ RmT

+ is a club good consumption plan. A club (nt, xt, yt)t=1,...,T is

feasible if
T∑

t=1

ntxt + C
(
n1y1, . . . , nT yT

)
5 0. (1)

Net demands for the private goods and the costs for the provision of the club goods

sum to zero at most.4 For simplicity, there is no production of private goods. Its

inclusion would be a straightforward extension of the model.

A consumer of type t has an extended utility function U t : R` ×Rm → R over his

total private and club good consumption. However, since his initial endowment wt is

fixed, we may simply write U t(xt, yt). In principle we allow an agent to have short

positions in all commodities.

Next we introduce our main efficiency concept. Consider two feasible clubs given by

(nt, xt, yt)t=1,...,T and (nt
0, x

t
0, y

t
0)t=1,...,T . The club (nt, xt, yt)t=1,...,T is an improvement

over the club (nt
0, x

t
0, y

t
0)t=1,...,T if

U t(xt, yt) > U t(xt
0, y

t
0)

whenever nt > 0. If no such improvement exists for a club (nt
0, x

t
0, y

t
0)t=1,...,T , then

(nt
0, x

t
0, y

t
0)t=1,...,T is called club efficient , following Schweizer (1983).

A feasible club (nt
0, x

t
0, y

t
0)t=,...,T is a Lindahl equilibrium if there exist a private

goods price vector p ∈ R`
+ and personalized admission price vectors p1, . . . , pT ∈ Rm

+

such that the following conditions are satisfied:

1. For every t ∈ {1, . . . , T} with nt
0 > 0 the allocation satisfies the consumer utility

maximization condition

(xt
0, y

t
0) = argmax U t(xt, yt) subject to pxt + ptyt 5 0.

4We remark that Schweizer (1983) introduces a given endowment for the club, denoted by F = 0,
that covers the provision costs of the public goods and the net demands for private goods. In that
case, in equation (1) the zero is replaced by F . Here we limit our discussion to the case without
such an endowment.
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2. The club (nt
0, x

t
0, y

t
0)t=,...,T satisfies a budget balance condition, i.e.,

T∑
t=1

nt
0 ptyt

0 = p C
(
n1

0y
1
0, . . . , n

T
0 yT

0

)
.

3. The club (nt
0, x

t
0, y

t
0)t=,...,T is optimal in the sense that for every alternative club

(nt, xt, yt)t=1,...,T
T∑

t=1

nt ptyt 5 p C
(
n1y1, . . . , nT yT

)
.

By the first condition, consumers maximize their utility given the market prices for

the private goods and the personal admission prices for the semi-public club goods.

The fees collected cover the costs of the provision of the club goods by the second

condition. The third condition stipulates that a public administration is in charge of

the provision of the club goods and admission prices, and as such has the objective

to maximize its “profits.” (This maximal profit is zero by the second condition.)

This condition is not included by the authors who consider the number of consumers

exogenous. (See Foley, 1970, and others referenced in section 1.) However, since

our theorem will entail that club efficiency implies Lindahl pricing, the result is

only strengthened by the inclusion of the third condition in the definition of Lindahl

equilibrium.

3 A decentralization result

Relatively little is assumed to arrive at complete decentralization of efficient clubs

through appropriate price systems. Following Foley (1970) and Schweizer (1983),

positivity of prices is ensured to render a complete decentralization through Lindahl

pricing.

Axiom There are two properties that have to be satisfied.

(a) For every type t = 1, ..., T the utility function U t is assumed to be continuous,

quasi-concave, and strongly monotonic.

(b) The club good production technology has to be convex in the sense that the

cost function C : RmT
+ → R`

+ is convex.

In the context of this assumption we have the following result.
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Theorem Under the properties stated in the Axiom, any efficient club (nt
0, x

t
0, y

t
0)t=1,..,T

with a strictly positive endowment,
∑

t=1 nt
0w

t � 0, can be supported as a Lindahl

equilibrium with strictly positive prices.

Proof. Let the club (nt
0, x

t
0, y

t
0)t=1,...,T be efficient.

We construct the following sets. First, for every t ∈ T we define the preferred set,

Bt =
{(

xt, 0, . . . , 0, yt, 0, . . . , 0
) ∣∣U t

(
xt, yt

)
> U t

(
xt

0, y
t
0

)}
⊂ R`+mT

In this definition we let yt be at location 1 + t.

Now for any profile n ∈ RT
+ we define the preferred set,

Bn =
T∑

t=1

ntBt =

{(
T∑

t=1

ntxt, n1y1, . . . , nT yT

)∣∣∣∣∣ U t
(
xt, yt

)
> U t

(
xt

0, y
t
0

)
for all t

}
.

Finally, we let

B = ∪
{
Bn

∣∣n ∈ RT
+ such that n > 0

}
⊂ R`+mT .

Second, we introduce the feasible set,

D =

{(
−C

(
n1y1, . . . , nT yT

)
− z, n1y1, . . . , nT yT

) ∣∣∣∣∣ n > 0, z ∈ R`
+,

y1, . . . , yT ∈ Rm
+

}
.

We remark that also D ⊂ R`+mT .

Bt is convex by quasi-concavity of U t for every type t. Consequently, the set B

is convex. Furthermore, from continuity of U t for every type t the set B is open as

well.

We show that D is convex. Let (y1, . . . , yT , z, n) and (ŷ1, . . . , ŷT , ẑ, n̂) constitute

(but not be) members of D. Define v =
(
n1y1, . . . , nT yT

)
and v̂ =

(
n̂1ŷ1, . . . , n̂T ŷT

)
.

Then (−C (v)− z, v) ∈ D as well as (−C (v̂)− ẑ, v̂) ∈ D.

Now consider λ ∈ [0, 1]. We have to show that there exists a tuple (ỹ1, . . . , ỹT , z̃, ñ)

such that (−C (ṽ)− z̃, ṽ) ∈ D where ṽ =
(
ñ1ỹ1, . . . , ñT ỹT

)
, ṽ = λv + (1− λ) v̂, and

C (ṽ)+ z̃ = λ (C (v) + z)+(1− λ) (C (v̂) + ẑ). This can be accomplished by selecting

ỹt = λntyt + (1− λ) n̂tŷt for every t, ñt = 1, and

z̃ = λC (v) + (1− λ) C (v̂)− C (ṽ) + λz + (1− λ) ẑ.

Now ṽ = λv + (1− λ) v̂ and by convexity of the cost function C it follows that

z̃ = λC (v) + (1− λ) C (v̂)− C (ṽ) + λz + (1− λ) ẑ

= C (λv + (1− λ) v̂)− C (ṽ) + λz + (1− λ) ẑ

= λz + (1− λ) ẑ.
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Hence, z̃ = 0 and thus indeed (−C (ṽ)− z̃, ṽ) ∈ D, finishing the proof that D is

convex.

We define the cone generated by the feasible set D by

D = {λd | d ∈ D and λ = 0} .

By convexity of D it follows that D is a convex cone.

We claim that B ∩D = ∅.
Suppose to the contrary that (nt, xt, yt)t=1,...,T constitutes a member of B, (n̂t, ŷt)t=1,...,T

and ẑ ∈ R`
+ constitute a member of D, and λ = 0 such that(

T∑
t=1

ntxt, n1y1, . . . , nT yT

)
=
(
−λC

(
n̂1ŷ1, . . . , n̂T ŷT

)
− λẑ, λn̂1ŷ1, . . . , λn̂T ŷT

)
.

This implies that λ 6= 0. From the equation it now follows that n̂tŷt = nt

λ
yt and that

T∑
t=1

nt

λ
xt = −C

(
n1

λ
y1, . . . ,

nT

λ
yT

)
− ẑ 5 −C

(
n1

λ
y1, . . . ,

nT

λ
yT

)
.

This implies that the club
(

nt

λ
, xt, yt

)
t=1,...,T

is feasible and improves upon the club

(nt
0, x

t
0, y

t
0)t=1,...,T . This is a contradiction to the efficiency hypothesis.

By the separating hyperplane theorem and the fact that D is a cone and B is

open, there exist p ∈ R`
+ and p1, . . . , pT ∈ Rm

+ not all equal to zero such that

(p, p1, . . . , pT )B = 0 = (p, p1, . . . , pT )D. (2)

By strong monotonicity of U t it can be concluded that B is comprehensive, and

therefore p, pt > 0.5 Also, by assumption that the aggregated total endowment is

strictly positive, we may conclude that
∑

nt
0pw

t > 0. Thus, there is a type t with

nt
0 > 0 and pwt > 0. For this type t an interior consumption plan is feasible with

respect to pxt + ptyt 5 0. Hence, by strong monotonicity and continuity of U t, using

a standard argument, p � 0 as well as pt � 0. Hence, by nonzero endowment

assumption, pwt > 0 for all t. By the same argument, all pt � 0. We will now prove

that these prices constitute a Lindahl equilibrium.

First, we show the consumer’s utility maximization condition. Suppose that

the tuple given by (xt, 0, . . . , 0, yt, 0, . . . , 0) — with yt at location 1 + t — satis-

fies U t(xt, yt) > U t(xt
0, y

t
0). In fact, since p � 0, pwt > 0, and the utility function

is strongly monotonic and continuous, the same holds for a pair of slightly smaller

5Here we define p > 0 if p = 0 and p 6= 0.
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vectors. Now from the separation property (2) and the strict positivity of all prices

it is concluded that pxt + ptyt > 0.

It remains to show that (xt
0, y

t
0) satisfies the budget condition pxt

0 + ptyt
0 = 0 if

nt
0 > 0. Indeed from the feasibility condition for (nt

0, x
t
0, y

t
0)t=1,...,T it follows that

there is some z ∈ R`
+ such that(

T∑
t=1

nt
0x

t
0, n

1
0y

1
0, . . . , n

T
0 yT

0

)
=
(
−C

(
n1

0y
1
0, . . . , n

T
0 yT

0

)
− z, n1

0y
1
0, . . . , n

T
0 yT

0

)
∈ D.

From the separation property (2) it then follows that

T∑
t=1

nt
0px

t
0 +

T∑
t=1

nt
0p

tyt
0 =

T∑
t=1

nt
0

(
pxt

0 + ptyt
0

)
5 0. (3)

By strong monotonicity (xt
0, 0, . . . , 0, y

t
0, 0, . . . , 0) belongs to the boundary of Bt ⊂ B.

From (2) it immediately follows that pxt
0 + ptyt

0 = 0. Hence, each term in (3) must

be zero. Since nt
0 = 0 for all types t it now immediately can be concluded that

pxt
0 + ptyt

0 = 0 if nt
0 > 0.

Together with previously shown statement, this proves that (xt
0, y

t
0) indeed solves

the consumer’s problem if nt
0 > 0.

Second, we consider the financial balance condition. Since, as shown above, each

term in (3) must be zero, it follows immediately that

T∑
t=1

nt
0p

tyt
0 = −

T∑
t=1

nt
0px

t
0 = pC

(
n1

0y
1
0, . . . , n

T
0 yT

0

)
, (4)

where the last equality reflects the fact that the feasibility constraint is binding, using

strong monotonicity.

Lastly, we consider the problem of the public administration. As pointed out

above, by strong monotonicity and continuity of the U t’s, (
∑

nt
0x

t
0, n1

0y
1
0, . . . , n

T
0 yT

0 )

belongs to the boundary of B. As the feasibility constraint is binding, this implies

that (−C
(
n1

0y
1
0, . . . , n

T
0 yT

0

)
, n1

0y
1
0, . . . , n

T
0 yT

0 ) belongs to the boundary of B as well.

Hence from the separation property it must be priced higher than regular D-member

(−C
(
n1y1, . . . , nT yT

)
, n1y1, . . . , nT yT ). The value of the former is zero by the just

established balance (4). Hence the value of the latter is nonpositive, or

T∑
t=1

ntptyt − p C
(
n1y1, . . . , nT yT

)
5 0.

This proves that (y1
0, . . . , y

T
0 , n0) indeed solves the public administration’s problem.
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This completes the proof of the theorem. �

With regard to this equivalence theorem we have the following remarks. If the popu-

lation is not replicated, i.e., n0 = (1, . . . , 1), the financial balance condition of Lindahl

equilibrium can be simplified further to
∑T

t=1 pty0 = py0. Hence, if only one club good

is supplied and it is designated the numerair, then the admission prices or fees sum

to unity.

Also we emphasize that the converse of the theorem is true, implying that it is

a true equivalence result. A Lindahl equilibrium is always efficient. The proof is an

easy adaptation of Schweizer’s (1983) proof of his second theorem.

Finally, we remark that the implementation of more general club good cost func-

tions is probably very hard. In the next example we consider a cost function that

is more general, but fails to lead to equivalence of efficient clubs and the Lindahl

equilibria. Semi-public goods, as we defined them, have a distinct structure in that

only total consumption by type, y = (n1y1, ..., nT yT ) ∈ RmT
+ , affects their provision.

In general, a club with profile n and club goods demands y may impose resource

requirements in a way that is not separable by type.

Counterexample Consider an economy setting with one private and one club good,

i.e., ` = m = 1, and two types of consumers, i.e., T = 2, with the following utility

functions:

U1 (x, y) = min(2x + 4, y);

U2 (x, y) = min(2x + 3, 2y).

Now consider a production structure for the club good that does not satisfy the

convexity requirement considered in our model. The cost function is given by

C
(
n1, n2, y1, y2

)
= max

t∈{1,2}
nt · max

t∈{1,2}
yt.

This cost function can be interpreted as representing a semi-public good of which

the provision is based on the maximal consumption capacity requested, where the

maximal capacity is max nt.

Consider the club given by n0 = (1, 1), x1
0 = x2

0 = −1, and y1
0 = y2

0 = 2. This club is

efficient, as we demonstrate now.

We show that U2 cannot be lifted over its club level, 1, whenever n2 > 0, U1 = 2

(its club level), and feasibility is fulfilled. Invoking linear homogeneity with respect

to n, feasibility can be written as

n1x1 + x2 + max(n1, 1) ·max(y1, y2) 5 0.
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Hence

x2 5 −n1x1 −max(n1, 1) · y1.

Substitute x1 = −1 and y1 = 2 (both from U1 = 2):

x2 5 n1 − 2 max(n1, 1) 5 −1.

Hence U2(x2, y2) 5 1 indeed, proving club efficiency, and this level is obtained only

if n1 = 1 and the feasibility constraint is binding:

x1
0 + x2

0 + max(y1
0, y

2
0) = 0.

Lindahl pricing by p and substituting the Lindahl break-even constraint for the semi-

public goods, the sum of the consumers’ budgets is zero. Since each of them is

nonpositive, they are all zero. Better clubs must be priced higher, hence positively.

But this is not so. Consider any club with n arbitrary, (x1, y1) = (−1, 2) again, but

(x2, y2) = (−1/2, 1). A consumer of type 2 prefers it. This consumption bundle is

half the club-efficient bundle, (x2
0, y

2
0) = (−1, 2), which has zero value, hence it is

affordable. The efficient club cannot be supported as a Lindahl equilibrium. This

completes the example.

4 Discussion

Our theorem provides price support to allocations that cannot be improved upon by

clubs. The prices are linear, unlike Mas-Colell’s (1980) personalized price schedules

(also used by Gilles and Scotchmer, 1997) or Barham and Wooders’ (1998) admission

fees or “wages.” The theorem and its proof are adaptations of Schweizer’s (1983)

theorem on club efficient allocations. He obtains the Henry George Theorem for

economies with fixed public goods and associated inputs and, if the latter are zero,

the welfare and core limit theorems. In the present paper, club goods are not exoge-

nous, but endogenous, namely the outcome of competition among utility maximizers.

Moreover, these club goods are not purely public, but semi-public.

After all, it is well known that there is no competitive basis for Lindahl equilibria

in pure public goods economies (Milleron, 1972, and Bewley, 1981). Wooders (1978)

has conjectured that the core shrinks when there is crowding, but Conley and Wooders

(1997) show that the second welfare theorem is generally false. Barham and Wood-

ers (1998) provides useful relationships between optima and competitive equilibria,

but all these papers concern economies with only one private and one public good.

More generally, Conley (1994) conjectures that the core of a public goods economy
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converges only in the knife-edge case in which the increasing returns to coalitional

size are precisely offset by crowding, diminishing marginal returns in production, or

something similar. In a sense, we have articulated this intuition. For example, if the

public goods function is C(ny) = F + (ny)2 (everything scalar), then club efficiency

brings about the efficient scale of production, n0y0 =
√

F . It is interesting to note,

however, that our model is quite general.

An alternative modelling of an economy with multiple public goods such that the

Lindahl equilibrium emerges, has been undertaken by Vasil’ev, Weber, and Wiesmeth

(1995). That paper uses an alternative core definition, with utility levels of members

of blocking coalitions depending on the replica size and the coalition structure. Al-

though our approach to club goods may seem cleaner, the two approaches are closely

related, in the sense that the opportunity cost of individual public — or club — goods

consumption is not reduced with the size of the economy in either paper. From this

perspective the contribution of our paper is the demonstration that Schweizer’s the-

orem encompasses the core limit theorem of Vasil’ev, Weber, and Wiesmeth (1995).

The just mentioned replication literature has attempted to provide a competitive

basis for Lindahl equilibria by modelling congestion on the demand side, while we

have kicked the problem to the supply side. In a way this is a return to the intuition

of Ellickson (1973): all that matters is the convexity of the aggregate technology

set. In fact, the convexity not only ensures the belonging of the Lindahl equilibrium

to the core, but also the coincidence of the two solution concepts as the number of

consumers varies freely. Lindahl equilibria have a competitive basis in economies with

semi-public goods.
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