68 research outputs found

    New material of Laophis crotaloides, an enigmatic giant snake from Greece, with an overview of the largest fossil European vipers

    Get PDF
    Laophis crotaloides was described by Richard Owen as a new and very large fossil viperid snake species from Greece. The type material is apparently lost and the taxon was mostly neglected for more than a century. We here describe a new partial viperid vertebra, collected from the same locality and of equivalent size to the type material. This vertebra indicates that at least one of the three morphological characters that could be used to diagnose L. crotaloides is probably an artifact of the lithographer who prepared the illustration supporting the original description. A revised diagnosis of L. crotaloides is provided on the basis of the new specimen. Despite the fragmentary nature of the new vertebra, it confirms the validity of L. crotaloides, although its exact relationships within Viperidae remain unknown. The new find supports the presence of a large viperid snake in the early Pliocene of northern Greece, adding further data to the diversity of giant vipers from Europe

    First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group

    Get PDF
    The fossil record of Chamaeleonidae is very scarce and any new specimen is therefore considered important for our understanding of the evolutionary and biogeographic history of the group. New specimens from the early Miocene of Aliveri (Evia Island), Greece constitute the only fossils of these lizards from southeastern Europe. Skull roofing material is tentatively attributed to the Czech species Chamaeleo cf. andrusovi, revealing a range extension for this taxon, whereas tooth-bearing elements are described as indeterminate chamaeleonids. The Aliveri fossils rank well among the oldest known reptiles from Greece, provide evidence for the dispersal routes of chameleons out of Africa towards the European continent and, additionally, imply strong affinities with coeval chamaeleonids from Central Europe

    The last European varanid: demise and extinction of monitor lizards (Squamata, Varanidae) from Europe

    Get PDF
    Remains of a varanid lizard from the middle Pleistocene of the Tourkobounia 5 locality near Athens, Greece are described. The new material comprises cranial elements only (one maxilla, one dentary, and one tooth) and is attributed to Varanus, the genus to which all European Neogene varanid occurrences have been assigned. Previously, the youngest undisputed varanid from Europe had been recovered from upper Pliocene sediments. The new Greek fossils therefore constitute the youngest records of this clade from the continent. Despite being fragmentary, this new material enhances our understanding of the cranial anatomy of the last European monitor lizards and is clearly not referable to the extant Varanus griseus or Varanus niloticus, the only species that could be taken into consideration on a present-day geographic basis. However, these fossils could represent a survivor of the monitor lizards of Asian origin that inhabited Europe during the Neogene

    Monitoring and Scoring Counter-Diffusion Protein Crystallization Experiments in Capillaries by in situ Dynamic Light Scattering

    Get PDF
    In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D

    Structural Properties of Polyglutamine Aggregates Investigated via Molecular Dynamics Simulations

    Get PDF
    Polyglutamine (polyQ) beta-stranded aggregates constitute the hallmark of Huntington disease. The disease is fully penetrant when Q residues are more than 36-40 ("disease threshold"). Here, based on a molecular dynamics study on polyQ helical structures of different shapes and oligomeric states, we suggest that the stability of the aggregates increases with the number of monomers, while it is rather insensitive to the number of Qs in each monomer. However, the stability of the single monomer does depend on the number of side-chain intramolecular H-bonds, and therefore oil the number of Qs. If such number is lower than that of the disease threshold, the beta-stranded monomers are unstable and hence may aggregate with lower probability, consistently with experimental findings. Our results provide a possible interpretation of the apparent polyQ length dependent-toxicity, and they do not support the so-called "structural threshold hypothesis", which supposes a transition from random coil to a beta-sheet structure only above the disease threshold

    Taxonomic revision of the snakes of the genera Palaeopython and Paleryx (Serpentes, Constrictores) from the Paleogene of Europe

    Full text link
    Large constrictor snakes, referred to the genera Palaeopython and Paleryx, are an ecologically prominent part of the fauna of Europe during the Paleogene. Most species were named over a century ago and their taxonomy is largely based on isolated vertebrae. Furthermore, the majority of named taxa originate from imprecisely known localities within the Phosphorites du Quercy, in southern France, and thus their exact age is not known. We critically review and re-diagnose these genera based on personal examination of all existing type material, an array of new specimens, and a detailed literature review. We consider Palaeopython and Paleryx to be valid and propose vertebral characters to distinguish them. We recognize three valid species of Palaeopython, i.e. Palaeopythoncadurcensis (type species) from the Phosphorites du Quercy, Palaeopythonceciliensis from Geiseltal, and Palaeopythonhelveticus from Dielsdorf (Switzerland), and one valid species of Paleryx, i.e. Paleryxrhombifer (type species) from Hordle Cliff (England). Four other species, which were previously treated as members of Palaeopython and Paleryx, i.e. “Palaeopython” filholii and “Palaeopython” neglectus from the Phosphorites du Quercy, “Palaeopython” fischeri from Messel, and “Paleryx” spinifer from Geiseltal, are also considered as valid but pertain to other genera. Among these four taxa, “Palaeopython” fischeri has been recently assigned to its own genus, Eoconstrictor. A new genus, Phosphoroboa gen. nov. is established to accommodate “Palaeopython” filholii. We designate a lectotype for Palaeopythoncadurcensis and establish that the paralectotype maxilla and dentary are reasonably referred to this species. New material attributed to Palaeopythoncadurcensis is described from the old collections of the Phosphorites du Quercy. Paleryxcayluxi, another species established from the old collections of the Phosphorites du Quercy, is synonymized here with Palaeopythoncadurcensis. We further clarify important errors in the original description and figures of Paleryxcayluxi, identify the exact specimens that comprise the type series, and designate a lectotype. Much new material is described for Palaeopythonceciliensis from its type area in Geiseltal and intracolumnar variation is considered. We describe additional vertebral and cranial material of Paleryxrhombifer from its type area in Hordle Cliff. Based on this cranial material, we suggest non-booid affinities for Paleryxrhombifer. We designate a lectotype for Paleryxdepressus and agree with its previous suggested synonymy with Paleryxrhombifer. We re-describe the lectotype and paralectotypes of “Palaeopython” neglectus and refer and describe new material of this species from the Phosphorites du Quercy, paying special attention to intracolumnar variation; we also defer a decision on its generic relations until more abundant and complete material can be studied. We describe new vertebral material of the booid Eoconstrictor cf. fischeri from Geiseltal; similar material was previously known only from Messel and Dielsdorf. We determine that Eoconstrictorfischeri contains two distinct and unrelated species and describe intracolumnar variation in the nominotype. We clarify certain issues regarding the type series of Paleryxspinifer, designate a lectotype, and report previously unrecognized cranial material associated with the latter specimen; we transfer this species to Eoconstrictor based on cranial features and recombine it as Eoconstrictorspinifer comb. nov. We finally describe much new vertebral and cranial material of Phosphoroboafilholii comb. nov. from the Phosphorites du Quercy (both from the old collections but also from the late Eocene localities of Escamps A and C), paying special attention to intracolumnar variation. Based on this cranial material from Escamps, we identify Phosphoroboa gen. nov. as a booid. An analytical approach is undertaken in many isolated remains in order to quantify vertebral structures and assess intracolumnar variation, as well as associating isolated cranial elements to vertebral-based taxa. 3D models of the type material of the Geiseltal and Messel taxa are presented. The importance of vertebrae in the taxonomy of fossil Constrictores is addressed, although it is acknowledged that it is cranial material that can afford the most reliable phylogenetic conclusions. The diversity, distribution, biogeographic origins, and final demise and extinction of large Constrictores in the Paleogene of Europe are discussed

    The Diversity and Distribution of Palaeogene Snakes

    Full text link
    We give a review of all published Palaeogene snake taxa from all localities worldwide. Several conceptual and material advances in the past two decades—a focus on apomo+P31rphies, greater attention to variation, quantification of morphology, and new fossil discoveries—have vivified the fossil record. Particularly noteworthy have been new fossils from Gondwanan continents and complete, articulated skeletons. Species known only from vertebrae are unlikely to be placed precisely phylogenetically, but a high number of vertebrae is a strong indication that cranial remains are present, which in turn allow more precise phylogenetic placement. Extrapolations of snake palaeodiversity are of the same order of magnitude as rough calculations of cumulative lineage diversity in the Palaeogene, raising the prospect that palaeontological morphospecies may more closely approximate biological species than is commonly conceived. As their interrelationships become better known, Palaeogene fossils will increasingly help elucidate the early evolution of snakes
    • 

    corecore