43 research outputs found

    Role of pathogenic oral flora in postoperative pneumonia following brain surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-operative pulmonary infection often appears to result from aspiration of pathogens colonizing the oral cavity. It was hypothesized that impaired periodontal status and pathogenic oral bacteria significantly contribute to development of aspiration pneumonia following neurosurgical operations. Further, the prophylactic effects of a single dose preoperative cefazolin on the oral bacteria were investigated.</p> <p>Methods</p> <p>A matched cohort of 18 patients without postoperative lung complications was compared to 5 patients who developed pneumonia within 48 hours after brain surgery. Patients waiting for elective operation of a single brain tumor underwent dental examination and saliva collection before surgery. Bacteria from saliva cultures were isolated and periodontal disease was scored according to type and severity. Patients received 15 mg/kg cefazolin intravenously at the beginning of surgery. Serum, saliva and bronchial secretion were collected promptly after the operation. The minimal inhibitory concentrations of cefazolin regarding the isolated bacteria were determined. The actual antibiotic concentrations in serum, saliva and bronchial secretion were measured by capillary electrophoresis upon completion of surgery. Bacteria were isolated again from the sputum of postoperative pneumonia patients.</p> <p>Results</p> <p>The number and severity of coexisting periodontal diseases were significantly greater in patients with postoperative pneumonia in comparison to the control group (p = 0.031 and p = 0.002, respectively). The relative risk of developing postoperative pneumonia in high periodontal score patients was 3.5 greater than in patients who had low periodontal score (p < 0.0001). Cefazolin concentration in saliva and bronchial secretion remained below detectable levels in every patient.</p> <p>Conclusion</p> <p>Presence of multiple periodontal diseases and pathogenic bacteria in the saliva are important predisposing factors of postoperative aspiration pneumonia in patients after brain surgery. The low penetration rate of cefazolin into the saliva indicates that its prophylactic administration may not be sufficient to prevent postoperative aspiration pneumonia. Our study suggests that dental examination may be warranted in order to identify patients at high risk of developing postoperative respiratory infections.</p

    Power handling of a liquid-metal based CPS structure under high steady-state heat and particle fluxes

    No full text
    Liquid metal infused capillary porous structures (CPSs) are considered as a potential divertor solution for DEMO due to their potential power handling capability and resilience to long term damage. In this work the power handling and performance of such Sn-based CPS systems is assessed both experimentally and via modelling. A Sn-CPS target was exposed to heat fluxes of up to 18.1 MW m−2 in He plasma in the Pilot-PSI linear device. Post-mortem the target showed no damage to nor any surface exposure of the underlying W-CPS felt. The small pore size (∼40 µm) employed resulted in no droplet formation from the target in agreement with calculated Rayleigh-Taylor and Kelvin-Helmoholtz instability thresholds. The temperature response of the Sn-target was used to determine the thermal conductivity of the mixed Sn-CPS material using COMSOL modelling. These values were then used via further finite element analysis to extrapolate to DEMO relevant monoblock designs and estimate the maximum power handling achievable based on estimated temperature windows for all component elements of the design. For an optimized design a heat-load of up to 20 MW m−2 may be received while the use of CPS also offers other potential design advantages such as the removal of interlayer requirements

    Thermographic investigation of the effect of plasma exposure on the surface of a MAST upgrade divertor tile in Magnum-PSI

    No full text
    One of the issues faced by future fusion devices will be high divertor target heat loads. Alternative divertors can promote detachment, flux expansion and dissipation mechanisms to mitigate these heat loads. They have been investigated in several devices including TCV and DIII-D, and will be investigated on MAST-U. To evaluate their effectiveness, accurate target heat flux and power balance measurements are required in these machines. Infrared (IR) thermography is a widely used technique to determine the target heat flux, but is susceptible to surface effects and emissivity in carbon-walled machines. In this work, the effect of plasma exposure on graphite is assessed to understand what may happen in MAST-U. A sample of fine grain graphite, as used on MAST-U, is exposed to 30min plasma exposures, with density ne=6 × 1018m−3 and temperature Te=0.08eV as measured by Thomson scattering. During these pulses, the temperature is measured by a medium wave IR camera and is seen to decrease by ≈70 °C over the course of 3h of plasma exposure. Pyrometer measurements suggest that the IR camera data is affected by a change in the surface emissivity. Profilometry confirms erosion of graphite at the tile centre to a depth of ≈100µm, and a larger region of deposition further out, amounting to ≈40µm of materia

    Thermographic investigation of the effect of plasma exposure on the surface of a MAST upgrade divertor tile in Magnum-PSI

    No full text
    One of the issues faced by future fusion devices will be high divertor target heat loads. Alternative divertors can promote detachment, flux expansion and dissipation mechanisms to mitigate these heat loads. They have been investigated in several devices including TCV and DIII-D, and will be investigated on MAST-U. To evaluate their effectiveness, accurate target heat flux and power balance measurements are required in these machines. Infrared (IR) thermography is a widely used technique to determine the target heat flux, but is susceptible to surface effects and emissivity in carbon-walled machines. In this work, the effect of plasma exposure on graphite is assessed to understand what may happen in MAST-U. A sample of fine grain graphite, as used on MAST-U, is exposed to 30min plasma exposures, with density ne=6 × 1018m−3 and temperature Te=0.08eV as measured by Thomson scattering. During these pulses, the temperature is measured by a medium wave IR camera and is seen to decrease by ≈70 °C over the course of 3h of plasma exposure. Pyrometer measurements suggest that the IR camera data is affected by a change in the surface emissivity. Profilometry confirms erosion of graphite at the tile centre to a depth of ≈100µm, and a larger region of deposition further out, amounting to ≈40µm of material

    Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes

    Get PDF
    We recently described the use of Ti(0) microfibers as an anodization substrate for the preparation of TiO2 nanotubes arrays as porous photoanodes. Here, we report the use of these fibers as a scaffold to build porous photoanodes based on a WO3/BiVO4 heterojunction. The obtained photoelectrodes show promising results under visible light irradiation for water oxidation both in a typical liquid-phase photoelectrochemical setup and in a gas phase reactor (developed in-house) based on a polymeric electrolyte membrane

    Thermographic investigation of the effect of plasma exposure on the surface of a MAST upgrade divertor tile in Magnum-PSI

    No full text
    One of the issues faced by future fusion devices will be high divertor target heat loads. Alternative divertors can promote detachment, flux expansion and dissipation mechanisms to mitigate these heat loads. They have been investigated in several devices including TCV and DIII-D, and will be investigated on MAST-U. To evaluate their effectiveness, accurate target heat flux and power balance measurements are required in these machines. Infrared (IR) thermography is a widely used technique to determine the target heat flux, but is susceptible to surface effects and emissivity in carbon-walled machines. In this work, the effect of plasma exposure on graphite is assessed to understand what may happen in MAST-U. A sample of fine grain graphite, as used on MAST-U, is exposed to 30min plasma exposures, with density ne=6 × 1018m−3 and temperature Te=0.08eV as measured by Thomson scattering. During these pulses, the temperature is measured by a medium wave IR camera and is seen to decrease by ≈70 °C over the course of 3h of plasma exposure. Pyrometer measurements suggest that the IR camera data is affected by a change in the surface emissivity. Profilometry confirms erosion of graphite at the tile centre to a depth of ≈100µm, and a larger region of deposition further out, amounting to ≈40µm of materia
    corecore