882 research outputs found

    Paths in r-partite self-complementary graphs

    Get PDF
    AbstractThis paper aims at finding best possible paths in r-partite self-complementary (r-p.s c.) graphs G(r). It is shown that, every connected bi-p.s.c. graphs G(2) of order p. with a bi-partite complementing permutation (bi-p.c.p) σ having mixed cycles, has a (p-3)-path and this result is best possible. Further, if the graph induced on each cycle of bi-p.c.p. of G(2) is connected then G(2) has a hamiltonian path. Lastly the fact that every r-p.s.c graph with an r-partite of σ has non-empty intersection with at least four partitions of G(r), has a hamiltonian path, is established. The graph obtained from G(r) by adding a vertex u constituting (r + 1)-st partition of G(r), which is the fixed point of σ∗ = (u)σ also has a hamiltonian path The last two results generalize the result that every self-complementary graph has a hamiltonian path

    Voros product, noncommutative inspired Reissner-Nordstr{\"o}m black hole and corrected area law

    Full text link
    We emphasize the importance of the Voros product in defining a noncommutative inspired Reissner-Nordstr\"{o}m black hole. The entropy of this black hole is then computed in the tunneling approach and is shown to obey the area law at the next to leading order in the noncommutative parameter θ\theta. Modifications to entropy/area law is then obtained by going beyond the semi-classical approximation. The leading correction to the semiclassical entropy/area law is found to be logarithmic and its coefficient involves the noncommutative parameter θ\theta.Comment: 12 pages Late

    Pressure-induced Superconductivity in CaLi2

    Full text link
    A search for superconductivity has been carried out on the hexagonal polymorph of Laves-phase CaLi2, a compound for which Feng, Ashcroft, and Hoffmann predict highly anomalous behavior under pressure. No superconductivity is observed above 1.10 K at ambient pressure. However, high-pressure ac susceptibility and electrical resistivity studies to 81 GPa reveal bulk superconductivity in CaLi2 at temperatures as high as 13 K. The normal-state resistivity shows a dramatic increase with pressure.Comment: bulk superconductivity in CaLi2 now confirme

    Microscopic calculation of proton capture reactions in mass 60-80 region and its astrophysical implications

    Full text link
    Microscopic optical potentials obtained by folding the DDM3Y interaction with the densities from Relativistic Mean Field approach have been utilized to evaluate S-factors of low-energy (p,γ)(p,\gamma) reactions in mass 60-80 region and to compare with experiments. The Lagrangian density FSU Gold has been employed. Astrophysical rates for important proton capture reactions have been calculated to study the behaviour of rapid proton nucleosynthesis for waiting point nuclei with mass less than A=80

    Development of Sstreamflow Projections Under Changing Climate Conditions Over Colorado River Basin Headwaters

    Get PDF
    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting System (RFS) hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins

    Development of Streamflow Projections Under Changing Climate Conditions Over Colorado River Basin Headwaters

    Get PDF
    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by forecasts determined by the Colorado Basin River Forecast Center (CBRFC). While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force a hydrologic model utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the CBRFC hydrologic model is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands over the Gunnison resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the CBRFC’s hydrologic model resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins
    • …
    corecore