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This paper aims at finding best possible paths in r-partite self-complementary (r-p.s c.) graphs 
G(r). It is shown that. every connected bi-p.s.c, graphs G(2I of order p. with a bi-partite 
complementing permutation (bi-p.e.p) o" having mixed cycles, has a (p-3)-path and this result 
is best possible. Further. if the graph induced on each cycle of bi-p.c.p, of G(2) is connected 
then G(2) has a hamiltonian path. Lastly the fact that every r-p.s.c, graph with an r-partite 
complementi:~.,'.' permutation Ir-p.c.p.) o" which permutes the partitions and for which each cycle 
of <r has non-empty intersection with at least four partitions of G(r), has a hamiltonian path, is 
established. The graph obtai,~ed from G(r) by adding a vertex u constituting (r+ t)-st partition 
of G(rL which is the fixed peint of or* = (u)o- also has a hamiltonian path. The last two res'dts 
generalize the result that every self-complementary graph has a hamiltonian path. 

Introduction 

T h e  word  "'graph" will m e a n  a finite, u n d i r e c t e d  g raph  wi thou t  loops  and  

mul t ip le  edges .  For  the  no ta t ion  a n d  t e - m i n o l o g y  no t  de f ined  h e r e  we refer  to 

H a r a r y  [4]. 

A n  " ' r -par t i te  g r a p h "  G(r) is a g r aph  w h o s e  ve r tex  set  V ~  V(G(r)) can be  

pa r t i t i oned  in to  r ~> 1 n o n - e m p t y  subse t s ,  also cal led par t i t ions ,  so  tha t  no  edge  

has  bo th  e n d s  in any  o n e  ~ubset .  Let  A~ . . . . .  A ,  cons t i t u t e  an r -par t i t ion  of V 

with IAi l=  hi, ni >~ l (i = I . . . . .  r). 

A n  r -pa r t i t e  g r aph  G( r )  is said  to be  " ' comple te  r-partite'" if each  ver tex  is 

j o ined  to every  o t h e r  ve r tex  tha t  is no t  in t he  s a m e  subse t .  Such a g raph  is 

d e n o t e d  by K .. . . . . . .  ~, C~early. K . . . . . . . . .  h a s  ~ =  ~ n~ ver t ices  a n d  ~7>.~_ t n,n i edges .  

Bipar t i t ion  of  a c o n n e c t e d  g raph ,  if exis ts ,  is un i que .  But ,  in genera l ,  r- ,garti t ion 

of  a g raph  n e e d  no t  be  un ique .  H e n c e f o r t h ,  if G(r) is g iven to be  an r -par t i t e  

g raph ,  we a s s u m e  tha t  an  r -pa r t i t ion  of G(r) is p resc r ibed .  

T h e  " r - p a r t i t e  c o m p l e m e n t "  (~(r) of  an  r -pa r t i t e  grapia G(r) is again  an 

r -pa r t i t e  g raph  wi th  ve r tex  set  V(G(r)), sa t i s fy ing  t he  fe,llowing condi t inns :  

(i) for  u,v~ Ai, l ~ i  <~r:(u, v)~ E(ffJ(r)), 
(ii) for  u~A~, v~A~, l<- i~ j~r : (u , v )~E(CJ( r ) )  iff (u ,v)¢E(G(r); .  

An r -pa r t i t e  g raph  G(r) is said  to be  " r - p a r t i t e  self-complementary'" (r-p.s.c,!  if 

t he re  exis ts  an  r -pa r t i t i on  of V ( G ( r ) )  wi th  r e spec t  to  wh ich  G( r )  a n d  G( r )  are  

i somorph ic .  
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The concepts r-part i te  complement  and r-p.s.c, graph are first defined and 

studi~.d in Hebbare  [5]. 

Rqmmrk. The class of classical sel f -complementary (s.c.) graphs, first studied by 
Ringel [7], and  Sachs [8], is included in the class of r-p.s.c, graphs, with r ~> 1 and 
n~ . . . . .  n, = 1. We  refer  to a survey article by Bhaskara  Rao [1] and the 
references given in the,'e, for most  of the  exisfi:~g l i terature on  s,c. graphs. 

Let G(r) be an r-p.s.c, glaph with the  vertex set V(G(r)) = {1, 2 . . . . .  p}. Then  
t~,e isomorphism between G(r) and ¢~(r) can be represepted as a permuta t ion  ¢r 
in the set V(G(r)). We then write, ¢r(G(r))= G(r), and call ~r an " r -par t i t e  
com?lement ing  permuta t ion"  (r-p,c.p) for G(r). We assume that,  all permuta t ions  
are exr~ressed as the product  of disjoint cycles. Further ,  we do not  distinguish the 
symbol:: of the  permutat ion and vertices of the  graph. Now, let <r = ~rt • • • cr~ be 
the disjoint  cycle representat ion of or. A cycle, ~r~ (i = 1 . . . . .  A) of cr is said to be 
" p u r e "  if L,~ ~ Aj, for some j ~ {1, 2 . . . . . .  r} and "mixed"  otherwise.  In o ther  words, 
a mixed cy,-le of cr contains vertices from at least two part i t ions of G(r). Let 
qg(G(r~) ~'p/G(r)), and ~m(G(r)) denote  the  set of all r-p.c.p., r-p.c.p, each of 
whose cycles xs pure,  and r-p.c.p, each of whose cycles is mixed, of G(r). We 
simply write qg, "~  and ~ ,  for the above sets when there is no confusion. We  list 
here some observat ions and  theorems from Gangopadhyay  and Hebba re  [3] 
which will be useful in what  follows. 

Observation 1. Let G(r) be an r-p.s.c, graph and o-~ ~. Then for any two ~ertices 
u and v belonging to different part i t ions of G(r) ,  (u, t~)~ E if and only if (¢r(uk 
o'(v))¢ E where (u. v) denotes  an edge of G(r). 

Observat ion 2. For a~l r-p.s.c, graph G(r), ~ > , .  tn~n~ must be even. In particular, 
when r = 2, nt or n2 must be even and when r = 3, at least two of n, .  ~2 and n~ 
must be even. 

Observat ion 3. Let {tri,, . . . .  tr,,} be a subset of the set of cycles cf tr where 
1 <~ t~ ~< A such that  the union of tr,,, . . . .  tri~ has non-empty  intersection with k 
parti t ions (1 ~ k  ~ r )  of G(r) and with no other.  Then  the graph induced on the 
vertices of o-~,. . . . .  cr~ is a k-p.s,c, graph with a k-p.c.p, being a*  = a ,  • • - tr,. 

An r-p.c.p. ~r of an r-p.s.c, graph G(r) is said ~o be periodic if tT maps each A~ 
into some Ai. The class of all periodic r-p.c.p. 's of G(r) is 6eno ted  by ~*(G(r ) ) .  

Theorem 1.1, Let G(r) be an r-p.s.c, graph and let try: "~*. Then o ' a ~ A u t  G(r) ,  
where Aut G(r) denotes the group of all automorphism~ of G(r). 

In particular, if cr is a bi-p.c.p, of a connected bi-p.s.c, graph G(2),  then 
t r 2~Au t  G(2),  and if cr is a p-p.c.p, of a p-p.s.c. (i.e., s.c.) graph G(p) ,  then 
cr2~ Aut  G(p). 
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Let ~r~ ~ and ~r = cr~ • • - (r~, A mixed cycle o-~ of or, wi~h Icr~! = ka, is said to be a 
"(k, a)-cycle" if cr~ has e×actly a />  l vertices from each of the k t> 2 partitions, 
say, A~ . . . . .  Ak of G(r) in the following order: 

o i = ( u l l " " u k l u l ~ " "  Uka''" Ul,~' ' 'Uk=) 

where 

u~,. ~ A t  ( l = l . . . . .  k ;  m = l . . . . .  a ) .  

Theorem 1.2. Let G(~) be an r-p.s.c, graph and let ere %~*. Let ~r~ be a mixed cycle 
o] e" having non-empty intersection with k of the partitions of G(r) and with no 
other. Then Io-d = ka, for some k>~2, a >>- 1 and cr~ is a (k, a)-cycle. Further, 
k ---- 0 (mod 4) when a is odd. 

Theorem 1.3. Let G(r) be an r-p,s.c, graph and let ( r ~ * .  Let cr~ be a (k, aO- 
cycle of c~ hat, ing non-empty intersection with A i  . . . . .  A~ in the same order. Then 
the following hold: 

(a) A n y  other cycle ~r2 of cr having non-empty intersection with any of the 
partitions A1 . . . . .  Ak is again a (k, a2)-cycle, for some a 2 ~  1 and (r2c U~=IA~. 

(b) The order of the partitions of o2 is same as that of oh upto a cyclic 
permutation, 

As a consequence of Theorems 1.2 and 1.3 it follows that cycles of any 
connected bi-p.c.p, of a bi-p.s.c, graph are either all pure or .dl mixed. 

Theorem (Rfdei  [6]). Let C be a set of n elements with a reiation< such that, for 
all a and b (a,~b) in C, either a < b  or b < a .  Then the elements of C may be 

arranged in a sequence at < A n < ' ' "  < a,. 

Note that, R6dei 's theorem is equivalent to saying that every finite tournament 
has a hamiltonian path. 

S.c. graphs by their very nature enjoy nice properties such as that every s.c. 
graph G has a harniltonian path, a fa,:t proved by Clapham [2]; if p ~ 8~ for every 
integer l, 3 <~ l <~ p-2, G has an /-cycle and furthermore, if G is hamiltonian then 
G is pancyclic. Hence, the class of s.c. graphs can be classified into three classes 
according as the circumference being ~-2, p-1 and p. Further, each of the above 
three classes of s.c. graphs is characterized in terms of degre '  sequences, in 
particular, the case p characterizes the class of hamiltc, nJan s.c. graphs. All these 
facts are proved by Bhaskara Rao arid we refer to [1] for the relevant references. 

The class of r-p.s.c, graphs is a natural generalization of s.c. graphs in the class 
of simple (without loops and multiple edges) graphs. In particular, we have the 
feeling that most of the results in s.c. graphs may be generalized or extended to 
r-p.s,c, graphs, especially to r-p.s.c, graphs with axi r-p.c.p. 6 ~*  consisting of only 
( k, c0-cycles. 
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Structural properties of r-p.c.p, of r-p.s.c, graphs are considered in Gan- 
gopadhyay and Hebbare [3] wherein, besides the results stated above, a generali- 
zation of Ringel and Sachs" Theorem (See [1]) for s,c. graphs to r-p.s.c, graphs is 
given. 

This paper aims at determining the maximum length of a path that exists in any 
r-p.s.c, graph. It is shown that, e v e y  connected bi-p.s.c, graDh G with ~,,:P 0 has 
a (p-3)-path, (i.e. a path consisting of exactly p-? edges and p-2 vertices) and that 
this resul~ is best possible and that C has a hamiltoniar, path if the graph induced 
on each cycle of a ( re  q~r, is connected. Lastly, the fact that for r~>4, every r-p.s.c. 
graph G(r) with a o-~ ~* such that each cycle ~i of o, has non-empty intersection 
with at least 4 partitions of G(r), has a hami',tonian path, is also established, 

The graph obtained from G(r) by adding a vertex u constituting it '~ 1)-st 
partition of G(r), which is the fixed poiat of o-*= (u)cr, also has a hamihonian 
path. The last two results generalize the resalt of Clapham [2], 

The prool~ technique employed in proving the results in this paper is essential!y 
~imilar to the proof technique in Clapham [2]. 

2. Paths in bi-p.~.c, graphs 

Theorem 2.1. Every connected bi-p.s.c, graph G(2) of order p with ~ .  ~ 0 has a 
(p-3)-path; this statement is best possible. 

Proof. Let o- ~ Em and cr = trt • " • tr~ be its disjoint cycle form. Wc then consider 
two cases according as (i) A = 1, and (it) A > 1. 

Case 1. A = I .  Let ( r = ( l  2 . . . n )  where n = 4 t ,  t>~l (n~( l (mod4?t  by 
Theorem 1.2). Without loss to generality, we can assume that (1, 2 ) ~ E  (for 
otherwise, ~2, 2)~ E ,and we cart conside:: tr = (2 3 • • • n 1)). Since tr2~ Aut G(2). 
we ~,et that (i, ;+  I ) ~ E  for all i odd. 

II' t = ~, then G consists of two copies of I(=. 
Scppose thw~. t > 1. Then two cases arise acc~,rding as (1, 4)~ E or not. 
If (1,4)~_ E, then (i, i+  3)6 E for ali odd i. I;, this case, 

1,4,3, ,6 . . . . .  4t, 4 t - l ,  2.1 

is a hamiltonian cycle. 

If (1, 4) ¢_ E, then (2, 5)~ E and hence (i, i + 3)~ E for all i even. In this case, 
G(2) has two disjoint 2t-cycles as follows: 

C~, : i, 2, 5, 6 . . . . .  4t-7, 4t-6, 4t-3, 4t-2, 1 

and 

C~_,: 3.4, 7, 8 . . . . .  4t-5, 4 t -4 .4 t - l ,  4t, 3. 
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K e m a r k .  T h e  cycle C~, (C~,) has  t h e  ver tex  labels-=-1 or 2 (mod  4 ) ( ~  0 or  
3 (rood 4)) and they appea r  al ternat ingly.  

Since G(2)  is c o n n e c t e d  the re  mus t  exist an edge  f r o m  s o m e  ver tex  of C ,  ~, to 

s o m e  ver tex  o f  C,~,. T h e n  G has a hami l ton ian  patl , .  

Case 2. h > 1. Let  

oi=(t~lui2.''u,,4,,), ( i =  1 . . . . .  h)  

w h e r e  jo-~[ = 4t~, (i = 1 . . . . .  h).  T h e n  each  o-~ (i = 1 . . . . .  .~ ) is o n e  of the  fol lowing 

th ree  tyoes:  

(1) (o-i) is hami l ton ian .  

(2) (o-~) has two dis jo int  2t~-cycles. 

(3) (cri) ~ 2Ke.  

Let cr have h, cycles of type  i (i --- 1, 2, 3) and accordingly a r range  the  cycles of 

o- such that  t he  first h,  cycles are  of  type  1. the  nex t  h 2 cycles are of  type 2 and 
the  last h3 cycles are  of type  3, as follows: 

(r = c~ 1 • • - c~,/31 - • •/3~.,3'1 • • • 3'x, 

Type 1 Type 2 Type 3 

w h e r e  h = h ~ ÷  a z + h 3 .  
We  now def ine  an o rde r ing  b e t w e e n  two cycles of  cer ta in  type.  First,  for any al. 

oq cycles of  type 1, we  wri te  a, < a t if t he re  is an edge  f rom some  even ver tex of  a~ 

to  some  odd  ver tex of  a t w h e r e  i 7 ~ j, 1 ~ i. j ~ h , ,  and  u,~ ~ tq, (i = 1 . . . . .  h)  is said 
to  be o d d  or  evea  accord ing  as ] is c d d  or  eve:~. Not ice  that ,  if ~, < a  t then every  

even  ve ,  tex of  ~*i is ad jacen t  to  s o m e  o d d  ver tex  of  ~r, and  every  odd  ver tex of a t 
is ad jacent  to  ~ome even ver tex  of  a~. 

Now,  if a~.%, then  (u~2. uq3)~ E, which implies that  (t~,. u~2)~ E and hence  

a t < ai. Thus  for  any two cycles a~, a t of type 1 e i ther  al < a t o r  c~ < a~ holds.  

Observation 4. (i) c~ i < a~ ~md ai < ai may bo th  hold.  

(ii) o~ < a t and a t < ak do  not  imply a~ < %,  w h e r e  al, % ak are  cycles of type 1. 
By R6de i ' s  ~heorem the  cycles ~f type 1 may  be  a r ranged ,  af ter  sui table 

relabel l ing,  as follows: 

0~1<~0~2<,~ . . -  ~O~h~  , 

Cons ide r  now 13~, /3/, cycles (~f type  2, w h e r e  i ~ j, 1 ~ i, j ~ As. Recall  that  each 
such cycle f3 i of  length  Jl31J=4si ( i =  1 . . . . .  As) ind~lces a subgraph  (~3~) which 

con ta ins  two d~sjoint 2sl-cycles as fol lows:  

C ,  I • ~,~. D i l ,  Ui2,  I)iS, Di¢~, . . . .  ~-)1.4~-6, 1)i.4s~-3, ~)i.4s,-2" ~)i |  

and  

C 2 s ,  : ~)i3, ~)i4, u i 7 ,  o i g ,  - • - , oi.4s~-a, u t .4s i - l~  I)i.4s,,  1)i3- 
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We shall write/3~ ~,/3~ if there is an edge from some odd vertex of C ~ 2.~ tO some 
1 1 even verI,=x of C~,  and in this case we write that C2~> C2~. Also, it can be easily 

2 2 seen that, C,~ > C2~. 
Now, if /3,~/~, that is, if C ~ C ~  then (v~, o~2)~E and hence (t~2, v~a)eE 

which implies that 2 ~ C2~> t-2~ Thus interchanging the roles of C ~  and C2~ we get 
/3 i >/3i. Thus for any two cycles/3~ and/3 i of type 2 either/3~ >/3~ or/3i >/3~ holds. 
(Observatio:~ 4 is true for /3ds (i = 1 . . . . .  A2),) ~-~ence, by R6dei's Theorem the 
cycles of type 2 may be arra~ged after suitable relabelling as follows: /31 >/32 > 
• .  - > ~ .  

Lastly, let 3'~ and ~,~ be cycles of type 3, where i~j, l ~ i ,  ~ . ~ ,  each (~/~) 
consists of ~wo copies of Ks, say, K~.=(w, ,w~a)  and ~.~=(w~.~,wi~), 
(i = 1 . . . .  A3). We write ~,~ > ~/~ if ~ " , K2.~-'K2.h that is, when (w,,w;~)~E. This 
implies that 2 2 K2.~>K2. ~ since (w~3, w~)~E. If 3'~V~ then (w~, w~2)f~E, that is 
(w~2, w~)E E and hence K2j > K~2,~, In ~his case, by interchanging the roles of K~j 

2 and K2,i we obtain that Z > W. Thus for any two cycles ~ and Vi of type 3 either 
y~>V~ or ~h>v~ holds. (Notice that Observation 4 is true for W's ( i=  1 . . . . .  ~a)-) 

Hence by R6dei's Theorem cycles of type 3 may be a~anged after suitable 
relabelling as follows: 

.y~ -'>y2 > .  . . ~ % . .  

Now, let /31 and Yi be cycles of type 2 and 3 respectively. We write 3~ >~'i if 
C~>K~j, that is~ there .is an edge frem some odd vertex of C ~  to wj2 Also it 

2 2 follows that C ~  > K2j. Analogously, ,/j >/3~ means that there is an edge trom w~ 
to some even vertex of C2~. I f / 3 ~  Vj, then (vi~, w12)~E that is (vi2, wiz)EE and 
hence t~2j-'"~ "-,..2~.r'~ Now. by interchanging the roles of K~i. and K2i_. w~,. get that 
~/j >/31. Thus, for any cycles/3~ of type 2 and V1 of type 3 either/3i > ~,f or ~,i > ~3~ 
holds. Hence, by R6dei's Theorem the cycles of type 2 and 3 may be arranged 
after suitable relabelling as foll-~ws: 

8~,÷1>8~,+2>' " ">8~, 

where each (8~) is spanned by two cycles or copies of K2, say, 3~ and 82. Two 
cases arise tccording as (a) a~ > 0, h2 + h3 ~> 0, and (b) a ~ = 0, h2 ~ h3 > 0. 

Case (a) h~>0~ h2+h3~>0. Choose B = a ~ ,  C=aa, and, if A 2 + A 3 > 0  , A =8~, 
and D = 8~,+~. 

We write A > B  ( C > D )  if every odd vertex of A(C) is adjacent to some even 
vertex of B(D). Note that if AY/B, then every even vertex of A is adjacent to 
some odd vertex of B and if C ~ D ,  then given any even vertex v of C either v or 
tr2(v) is adjacent to some odd vertex of D. We also observe that if u is an odd 
vertex of C and u is adjacent to v, w in the hanfiltonian cycle in C, then either 
v = o-2(w) or w =  ~r2(v). Thus if CT"D, then there is a hamiltonian path in C 
which starts at any given odd vertex of C and ends at an even vertex of C which is 
adjacent to some odd vertex of D. We now consider the following four cases. I~ 
each of these cases we shall specify a (p-3)-path in G(2). 
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Case (a.i). A > B , C > D .  A > B  implies that each odd vertex of A is 
adjacent to some even vertex of B. Since, C > D  the same thing holds between 
them. The  (p-3)-path is as follows (see also Fig. 1): 

a o t ~  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  s 

r 0 0 

t,~ t ~  B ~" . . . . . . . . . . . .  © @... , 
t S 

Fig. 1. 

Start with any even vertex in 8],+1, cover all she xertices of it traversing along 
the cycle (or K2) ending up in an odd vertex. This odd vertex leads to an even 
vertex of 8~,+2 and cover all the vertices of it from this even vertex. Proceed until 
an even vertex of ~t  is reached and cover ail its vertices, the end vertex being odd. 
Since A > B, this odd vertex leads to sortie ~ven vertex of B. Cover all the vertices 
of B from this even vertex, except the last odd vertex, the end vertex being even. 
This even vertex leads to an odd vertex of a2, from which cover all its vertices, the 
end vertex being even. Thus proceed until an odd vertex of otx, is reached, from 
which cover all its w~rtices except the last even vertex. The last odd vertex leads to 
an even vertex of D from which cover all its vertices, the last vertex being odd. 
This in turn leads to an even vertex of 82 from which cover all its vertices 

, k l + 2  

ending in an odd vertex. In this way all the vertices of ~2,+3 ..... ~] can be covered. 
The path described above is a (p-3)-path which misses exactly two vertices, one 

from each of at  and ax.  
In all tb, e other three cases we shall describe the (p-3)-path through figures. 

Case (a.ii). A > B, C:P D. The (p-3)-path in this case is as shown in Fig. 2, 
which misses exactly two vertices, one from eact, of 2 8x,+l and at.  

Note that. if the vertex missed by the path is in a part of cycle of type 3 then 
simply we cover one vertex of the corresponding K2 and go to the succeeding 
cycle. We assume the same in what follows, whenever 3uch a situation arises. 

Case (a.iii). A:pB,  C > D .  The (p-3)-path in this case misses exactly two 
vertices of G(2), one from each of ~ and ct~, and is as shown in Fig. 3. 
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Fig. 2. 
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t , . -  )) I, ",'zi' " ' "  ~, ~ /) 

Fig. 3. 

Case (a.iv). A ~ B ,  C ~ D ,  o1" h 2 + h 3 = 0 .  I~ ~t2+ha>0,  the (p-3)-path misses 
exactly one vertex from each of ,5~ and ~,+~, and is as shown in Fig. 4. 

If h 2 + h a = 0 ,  that is if all cycles of o- are of type 1, then, clearly, G has a 
hamiltonian path, see Fig. 4 (only the type 1 part). 

Case (bL AI =0 ,  A2+h3>0 ,  In this case, the cycles 8~ (i = 1 . . . . .  h) of cr may 
be arranged as follows: 
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/ 

] 
e ~  . . . . . . . . . . . . . . . . . . . . . . . .  

{ ?? . . .  

\-_.J 
Fig. 4. 

where h = A2+A3 and each (6~) is spanned  by two cycles or copies of K2, viz, 6~, 
8~, (k = 1 . . . . .  A). We now consider the following three cases: 

Case (b. i). An  odd vertex of 6t~ is adjacent  t(~ some even vertex of 62. Then  
every odd vertex of 8[ is adjacenz to some even ~ertex of 8~. In this case we have 
a taamiltonian path as exhibi ted in Fig. 5. 

P 
/ 

l 

Fig. 5. 

Case (b.ii). A n  odd vertex of ~ is adjacent  to some even vertex of 8~. Then  
every even vertex of 8~ is adjacent  to  some odd vertex of 8~, and  every odd vertex 

of ~, is adjacent  te  some even vertex of 8~. Let Vm = U~=~ c5~ (m = 1, 2). Since G 
is connected,  there is a vertex u~ ~ V,, (m = 1, 2) such that  (u, ,  u2) e E. Let  u~ e ~ 
and u2~ 8~ for some (i, j = 1 . . . . .  A). Without  k ss of generality, we can take u~ to 
be odd and u2 to be even. Other~ ise .  we can interchange the  roles of 6~ and 5~ 
foc each (k = ! . . . . .  A). We now construct  a hamil tonian path,  as exhibited in Fig. 

6. 
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l, 

... - , i ] ' ,  . . .  

k 

Z 

Fig. 6. 

Case (b.iii). Every even vertex of ~ is agjacent to some odd vertex of 8~. in 
this case we exhibit a (p-3)-path, which misses exactly one vertex each in 6~ and 
8~, as exhibited in Fig. 7. 

f e e 0 

Fig. 7. 

This completes the proof of the first part of the theorem. 
In order to show that the result, is best possible, we exhibit an infinite class of 

bi-p.s.c, graphs having a (p-3)-path and no (p-2)-path. For this, by Observa- 
tion 2, in connection with the hypothesis ~,,=P O, it is enough to construct such 
examples for the order p = 4t where nl = 2t = n2. 

Let H = HI be the graph shown on Fig. 8(a). Define, Hi (See /-/2 of Fig. 8(b)) 
such that V(H~)= V(H~_0U{u~, ",, w'i, x~} and that H~ contains H~ I as an induced 
graph on V(H~_O with the additional edges as follows: 

(ui, O),(vl, b) for all bEIJ~_l. 

(ui, wi) and (vl, xi), 

where (A~ 1, B~_~) is the bipartition of V(Hi_~). Then, Hi is of order p : :  4 i + 4  
and is a bi-p.s.c, graph, for each i ~  > 1 and the following permutation ol is a 
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"~ ~ , ~ ~ ~ .  

(~) bl t 

V2 ~ ~2 

(b) H z 

Fig.  8. 

bi-p.c.p, of Hi: 

a~: (u~ x~ v~ w~) • • • (u~  x t  tJ~ w O ( a  x v w ) .  

A (p-3)-path of Hi is as given below: 

D, X, U I, X l ,  /')2, X2, U3 . . . . .  Ui-  I ,  X i - l ,  t~i , W, /A 1, 

• 'V l ,  U2, W2,  /~3. 193 . . . . .  t ~ i - ! ,  ~'Vi-l,  Ui, Wi' 

Notice that,  the vertices x~ and u are missing in the above path. 
Finally, since Hi contains 4 vertices of valency 1 (namely, u, v, x~, w~) ~he~e 

cannot  be a (p-2)-path.  This completes  the proof  ot the  theorem. 

Theorem 2.2. Let G(2) be a bi-p.s.c, graph with bi-p.c.p, cr 6 %',,,¢ ~ such that the 
graph induced on each cycle of tr is connected, Then O(2) hcs a hamiltonian path. 

Proot .  Let cr = o-t ' " ' tr~ ~ ~:m. (cry) is connected implies treat G is connected and 
that  [cr~l~8, and  Io~[=-O(mod4) for eac~a ( i = 1  . . . . .  A). Let Io~[=4t~. 

(i = 1 . . . . .  A). Further ,  let 

crl = (u~,. u~ 2 . . . . .  ui.40. 

Without loss to generality, we can assume that (v~ t, u,2)e E Since o-~e Aut  (/(2), 
(uir u l a + 0 e E  for all odd L Suppose now that, (uil, ui4)e E. Then (ulv ui.~3)e E 
for all odd j. In this case, we have the following hamilton~an cycle: 

[dil ,  IAi4, IAi3, I'~i6~ lJ-iS, ~'i8. IAi7 . . . . .  [At,4~-3Ui,4t,,  IAi,4t~-l, Ui2,  IdOl" 

Such a cycle o-~ is called of type 1. 

In the o ther  case, that is if (u~,u~.~)q~E, then ( ~ z , u ~ s ) z E  and hence 
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(uipui.i+3)EE for all even j. In this case, we have two disjoint 2t~-cycles as 

follows: 

C21t~ -" Uil,//i2, Uis, l l i6,  Ui9, Ui.lO . . . . .  Ui.4tL-3, Ui.4t~-2, Uil 

C2ti: ui3, Ui4, Ui7, WiS, Ui.ll, Ui,12 . . . .  Ui.41-!, Ui.4t,, ui3. 

Such a cycle t~ is called of type 2. In this case, since (o-i) is connected,  there  is 
u~iE(C2t~) and u~k e (C~  ~) such that  (u~ i, ~ k ) ~ E ,  where ei ther  j is odd  and k is 
even, or, j is even and  l: is odd. In e i ther  case. since er 2 ~ Aut G(2) ,  we have that 
for any u~j ~ (C~)  with j odd, there is an u~ ~ (C~)  with k even and  for any 
u~j E (C~ 0 with j odd, there is an t~  ~ (C~)  with k even such that  (l% u,~)c E. 
Now, given any even vertex of (C~,) (resp. (C~))  there is a path along C~,, (resp. 

Cz20 which covers all the vertices of (C~0 (resp. (C~O) and ends up in an odd 
vertex say ~j of (C,1~) (resp. (C~) ) ;  this odd vert~x is adjacent  to  some even vertex 
say um of (C~,,) (resp. (C;~)) and one can cont inue along C~,, (resp. C ~ )  in a path 
which ends up in an odd vertex of ( C ~ )  (resp. (C~0). Thus, if ~r~ is a cycle of type 
2, given any even vertex u,K of ~r~ there  is a hamil tonian path in ~r~ which starts 
with um and ends up in an odd vertex of cry. Note  that  the last observat ion also 
holds if ~r~ is a cycle of Type 1. THUS, given any cycle ~q. and an even vertex u~K in 
(~r~), there is a hamil tonian path ~n (o- i) which starts from u~K and ends  up in an 
odd vertex of (~ ) .  

Now, we order  oh . . . . .  ~r~ in the following manner .  We shall write ~r~ >cr~ if an 
odd vertex of ~r~ is adjacent  to an even vertex of o- v Evidently,  if o-~7-o,~, then 
cr i > o'~ follows. Hence,  by R~dei 's  Theorem,  the cycles of ~r may be  ordered  by 
suitable relabelling as follows: ~r~ > cr 2 >"  - • > ~ra. 

We now start  with any even vertex u~K, of ~r~. We know that there is a 
hamiltonian path in (~rt) which starts with t ~ ,  and ends up in an odd vertex of ~r~. 
Since o-~ >~r,,  this odd vertex is adjacent  to some even vertex u~ ,  of or2. There  is 
a hamiltoni~n path in (crz) which starts with u~.  and ends up in an odd  vertex of 
c%. From th~s odd vertex we proceed to an even v,zrtex urn, of or~ and so on. This 

gives us a hamil tonian path. 
Thus, G has a hamil tonian path with any even vertex of ~r~ as an end  vertex. 

Similarly, reversing the procedure,  we can get a hamil tonian path with any odd 
vertex of o-~ as an end  vertex. 

3. Hamiltonian paths in r-p.s.c, graphs with ~*:~ 0 

Theorem 3.1. Let G(r) be an r-p.s.c, graph, r >~4 with an r-p.c.p, rr 6- "~*# 0 where 
each cycle of cr has non-empty intersection with at least four partitions of G(r). 
Theft G(r) has a hamiltonian path. 

l~roo|. The  proof  goes on similar lines as that  of Clapham [2]. 
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Let  o- = o-~ • • - ~r~ ~ q~*. T h e n  by T h e o r e m s  1.2 and  1.3 ~ c  conc lude  that  each 
cr~ (i = 1 . . . . .  A) of  o" is a (k~, e~)-cycle, w h e r e  k~ ~ 4 ,  by hypothes is .  

T o  beg in  with,  we  cons ider  two cases  accord ing  as ( ! )  A = 1, and (2) A > 1. 
Case 1. A = I .  For  conven i ence ,  let  cr be  a ,~,o~)-cycle. k~>4 and  o-= 

( 1 2 3 . - .  k a ) ,  w h e r e  Io '[= k¢~, is even .  W e  fi~st a s sume  that  ( I ,  2 ) ~ E .  

If k = 4 a n d  ~ = 1, t hen  2, l ,  3, 4 or  1, 2, 4. 3 is the  r equ i r ed  hami l ton i an  path .  
Othe rwise ,  s ince  k ~  is even ,  it fol lows tha t  k ~ 4  a n d  a t> 2. T h e n  (1, 4) e E if and  
only  if (4, 7) ~t E. H e n c e ,  we m a y  suppose  tha t  e i t he r  (a) (i, i + 3) ~ E for  all odd  i, 
o r  (b) "(/', ] + 3~ e E for  all even  i. 

In case (a), we cons ide r  the  h a m i l t o n i a n  patt~; P~ ~',~r P2 accord ing  as (I ,  3 )~  E 
o r  (2, 4) e E w h e r e  

P 1 : 2 , 1 , 4 , 3 . 6 , 5  . . . . .  k a - 2 ,  kc~-3,  ka. 

P , :  1 . 4 . 3 . 6 . 5 . 8  . . . . .  kc~-3,  ka, 2, k c t - 1 .  

In case (b), we cons t ruc t  a h a m i l t o n i a n  pa th  P as follows. Let  P~ be  the  path  

1 , 2 , 5 , 6 , 9 ,  10 . . . . .  the  last  t e r m  b e i n g  k e ¢ - 2  or  k a  accord ing  as .'¢c~-=0 or  
2 (mod  4), an d  P2 b e  the  pa th  3, 4, 7 . 8 ,  11, 12 . . . . .  t h e  last t e rm  be ing  kc~ or  kt~ - 2  
accord ing  as ke~ =--0 or  2 (mod  4). T h e n  P is o b t a i n e d  by  c o m b i n i n g  P~ and  Pz, 
us ing  the  edge  ~ 1, 3) or  (ke~ - 2, kc~) w h i c h e v e r  exists. (Note  tha t  s ince  o "2 ~ Au t  G( r ) ,  
e i t he r  (1, 3 ) ~ E  o r  ( k a - 2 ,  k a ) ~ E .  

If (1, 2)¢~ E, t h e n  (2, 3 )~  E and  the  p roo f  is similar,  In any  case,  s ince o,2~ 
A u t  G(r), we have  the  fo l lowing 

Remark. Either (i) for  any two consecu t ive  o d d  ver t ices  of or, t he re  is a 
hami l t o n i an  pa th  in which  they a p p e a r  consecut ive ly  and  (ii) for  any two consecu-  
t ive even  ver t ices  of o ~. t h e r e  is a h a m i l t o n i a n  pa th  for  which  they  are end  vert ices,  

or, (i)' for  any two  consecu t ive  even  ver t ices  of or, t he re  is a h a m i l t o n i a n  pa th  in 
which  they a p p e a r  consecut ive ly  and  (ii)' fo r  any two consecu t ive  odd  ver t ices  of 
o-, t h e r e  is a h a m i l t o n i a n  pa th  for  which  they  are  end  vert ices.  

Case 2. h > 1. T h e n  b 5 the  R e m a r k  m a d e  in Case  I, it fol lows tha~ any cycle o-~ 
of ¢r satisfies e i t he r  (i) and  (ii) or  (i)' and  (ii)'. A cycle o-~ of cr is said to  be  of  type 
1 if it satisfies (i) and  (ii), and  is of type  2 if it satisfies (i)' and  (ii)'. 

W e  now ,define an  o rde r ing  b e t w e e n  any two cycles of  cr as follows: 
Let  cr~ arid er i be  cycles of cr of type  1. T h e n  we wr i te  o-~ <~r~ if ~ . , a e  even  

ver tex  of ~r~ is ad j acen t  to  some  odd  ver tex  of ¢rj. Then ,  it can be  easily seen  tl~at if 
cr~ "g ~ri then  ~rj < cry. 

Hence ,  for  any two cycles o-~, ¢r i of o~ of type  1 e i the r  o-. < crj, o r  o" i < cr~ holds.  
Let  cr~ an d  o-~ b e  of type  2. W e  wri te  o-~ <crj  if an  odd  ver tex  of ~r~ is ad jacen t  to 

some  even  ver tex  of crj. Aga in ,  it follows, wi th  this  o rder ing ,  tha t  e i t he r  o~ < o'j~ or  
cr~ < a~ holds.  

Lastly,  if c,~ and  o~j are  of types 1 and  2 respect ively ,  we wr i te  ¢r~ < c 6 if an even  
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vertex of 0q is adjacent to some ever., vertex of (r~. and cr~ < 0-~ if an odd vertex of 
cri is adjacent to some odd vertex of 0",. Then if cr~cr~ it follows that o-j<0-~. 
Hence, either ~r~ < or, or o-~ < ~r~ holds in this case also. 

Thus for any two cycles 0-~ and 0-, of ~r either o-~ < a~, or  o- i < 0-~ holds. Hence by 
R6dei's Theorem the cycles of ~r can be ordered by an appropriate relabelling of 
o'~'s as follows: 

o.~ <0-2<-  • - < 0 - .  

Now, each (o-~) is a k-p.s.c, graph for some k >~4 and by Case 1 there is a 
hamiltonian path in each (tr~)(i= 1 . . . . .  A). For tr t and o- 2 we consider the 
following four cases according to their types: 

Case 2(a). 0-t and or 2 are both of type 1, Ther, there is a hamiltonian path in 
(0-0 with its end vertices at consecutive even vertices, say, uu and u.+2 of 0"t. 
Since 0-~ <0-2, (u , ,  u2~)~ E for some odd j and hence (u1.~.2, u2,i.2) ~ E where the 
second suffix of a vertex is reduced modulo the length of the cycle containing it. 
Now, since 0-2 is of type 1, there is a hamiltonian path in ((r2) with u2i and u2,~÷2, 
with odd i, appearing consecutively. We can now obtain a hamiltonian path in 
(0-t CI0-2) by inserting the hamiltonian path of (0-~) between u~ i and u2.j.2 in the 
hamiltoniar: path of (0-2). 

The remaining cases are dealt ,xith in an analogous way: 
Case 2(b). 0-t is of type 1 and o-2 is of type 2. In this case. we can obtain a 

hamiltonian path in (tr~ to o2) by iqserting the hamiltonian path of (0-,) (its end 
vertices being consecutive even vertices u .  and uL~+2 of 0-0 between u2~ and 
u2.i.2 of the hamiltonian path of ((r2) (this is possible since, o-~ < (r 2 implies that, 
for some even j, (uli, U2j), (/~1,i+2, ||2d+2) E and u2i, uz.i+2 appear consecutively). 

Case 2(c). 0-a and tr z are of types 2 and 1 respectively. In this case, a 
hamiltonian path of ((r t tO (r2) can be obtained by inserting the hamiltonian path of 

(t, ,) (its end vertices at cnn~ecutive odd vertices u~, and ut.,+z of 0-0 between u2~ 
and u2.i+2 the consecutive odd ve~"tices appearinp, consecutively in the hamilto- 
nian path of (0-2) with odd j. 

Case 2(d). trt and 0-2 are both of type 2. In this case, the hamiltonian path of 
(0-~), with its end vertices being consecutive odd w'rtices un and tq.~+2, is in:~erted 
between u2j and uza+z--the consecutive even vertices in the hamiltonian path of 
(0-2) which gives a hamiltonian path in (o"1 to 0-2). .  

Thus it is possible to construct a hamiltonian path in (or t O 0-,), where ~r~ < 0"2. 
Next, in a similar way this hamiltonian path can be inserted into a hamiltonian 
path of (tr3), and so o~. The,",- "m 3 I is now proved. 

Note that the hamiltonian path constructed in tt~e above proof has the following 
properties: 

(1) It has two censecutive odd (even) vertices of 0-1 appearing consecutively if 
o'i is of type I (type 2). 
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(2) I ts  end  ver t ices  are consecu t ive  even  (odd) ver t ices  of ~ra if o'~ is of type  I 
( type 2). 

(3) Fo r  o-~ "<o-~+~ (i = l . . . . .  A), it has  s o m e  u~j and  u~+~,~ a p p e a r i n g  consecu-  
t ively w h e r e  j and  k are as follows: 

/" even  and  k odd ,  if o-~, tr~+~ are  b o t h  of type  l, 
j even  and  k even ,  if tr, is of type  1 and  tr,:+ t is o 5 type  2, 

o d d  and  k even ,  if cr~ and  o-~+~ are  b o t h  of type  2, and  
j o d d  and  k odd,  if tr~ is of type  2 and  tr, ~ is of  ':ype 1. 
Let  G ( r + l )  be  an ( r + l ) - p . s . c .  g r aph  wi th  an  { r + l ) - p . c , p .  ~ r * = ( t t ) t r ~ g *  

w h e r e  u is a fixed ver tex,  A~+~ ={u}  and  all o t h e r  cycles of tr has  n o a - e m p t y  
i n t e r s e c q o n s  wi th  at  least  f ou r  pa r t i t i ons  of G(r+ 1). T ~ e n  we h a v e  the  fol lowing:  

Theorem 3.2.  G ( r +  1) has a hamilto~ian path. 

Proof ,  Let  G(r) be  the  s u b g r a o h  induced  by c~ in G(r + I). T h e n  G(r) se,tL~fies the  
cond i t i ons  of T h e o r e m  3.1. 

Now cons ide r  t he  hamil toni~m pa th  h in G(r) as d e >  r ibed  in T h e o r e m  3.1. It is 
c o m p o s e d  of  severa l  p a t h s  each  be ing  ham i l t on i an  wi th in  a cycle of ,:r By the  
p rope r t i e s  (1). (2) and  (3), consecu t ive  ver t ices  (say) u~.~. u~,i+ 2 of same  p a r i ~  
a p p e a r  consecu t ive ly  wi th ip  h a m i l t o n i a n  p a t h  of tr~ and  consecu t ive  ,.ectices of 
oppos i t e  par i ty  to  u~, and u,.i+~ a p p e a r  as end  ver t ices  w:~thin tha t  hamil tor . ian  path  
h. Fur the r ,  if u is a d j a c e n t  to a ver tex  u~, of tr,, then  u is ad j acen t  to all the  
ver t ices  of o-~ with the  s ame  par i ty  as tha t  of u~j and  u is not  ad j acen t  to  all o t h e r  
ver t ices  of try. 

Now, let u~ euLi.,_ be  two ver t ices  of  same  par i ty  appea r ing  consecut ive ly  in fit 
whe re  h~ d e n o t e s  a h a m i l t o n i a n  pa th  i~, (o-~) (i = 1 . . . . .  AI. Suppose  that ,  u is 
ad j acen t  to u~j. T h e n  (u, ut.i+,)E E and  hence  u can be i n c o r p o r a t e d  in be tween  
u,i an d  u~,~.~_ in h and  we get a h a m i l t o n i a n  pa th  of G(r+ l). 

Now, let u~ be  aq e n d  ver tex  of h~ (and  h e n c e  by (2) also tha t  6f h) .  If 

(u, u~t)~ E, we ex~.end h so as to  inc lude  u. 
If n e i t h e r  of the  a b o v e  two  cases is poss ible ,  t hen  u is ad j acen t  to ver t ices  in crL 

hav ing  oppos i te  par i ty  wi th  u~i. But ,  h~ ha s  one  such ver tex  as its end  vert,.~x. 
T h e r e f o r e .  u is ad j acen t  to  this  e n d  ver tex  of  h~. By (31! this  ver tex  is ad j acen t  m a 
ver tex  of rr: in h. If u is ad j acen t  to  this  ver tex  of o-2 also, then  we are  th rough .  
Otherwise ,  u is a d j a c e n t  to  ver t ices  of oppos i te  par i ty  in or,_. As  h2 has  one  such 
en d  ver tex,  u is ad j acen t  to  it. T h u s  we p roceed ;  we ~,,ay find an L 1 <~ i ~ A - 1 
such that  (u, u~.~)~ E and  u is also ad j acen t  to  the  consecut ive  ver t ices  u,+ ~., arid 
i~.  ~.,~2 appea r ing  consecu t ive ly  in h,+ ~. But  (u,~, u~+ t.,) ~ E or  (u~. u, ~ ~.,+~) c E in h 
and  we a c c o m m o d a t e  u b e t w e e n  e i the r  u,.~ and  u,_~.,, o r  tt~ and  u,+~.,., as the  ca,;e 
may be.  If t he re  is no  such i, t hen  finally we get tha t  u is ad j acen t  to  the  end  
ver t ices  of Ik_~ and  u is not  a d j a c e n t  to  the  ver t ices  appea r ing  consecul ive ly  
within ha. T h e n  ~,~ mus t  be  ad j acen t  to the  end  ver t ices  of ha, con t ra ry  to  lhe  
assumpt ion .  This  p roves  the  t h e o r e m .  
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Corellary, 3.3.  (C lapham [2]L Every s.c. graph has a hamiltonian path. 

Lastly, we r e m ark  that ,  the  results  of  this p a p e r  are  no t  direct  c o n s e q u e n c e s  or 

the  sufficient condi t ion  given by Chvfital in t e rms  of  degree  s e q u e n c e s  and  hence  
the  special  p roo f  t echn ique  of C l a p h a m  is needed .  
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