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This paper aims at finding best possible paths in r-partite self-complementary (r-p.s ¢.) graphs
Gir). It is shown that, every connected bi-p.s.c. graphs G(2) of order p. with a bi-partite
complementing permutation (bi-p.c.p) o having mixed cycles, has a (p-3)-path and this result
is best possibie. Further. if the graph induced on each cycle of bi-p.c.p. of G(2) is connected
then G(2) has a hamiltonian path. Lastly the fact that every r-p.s.c. graph with an r-partite
complementing permutation (r-p.c.p.) o which permutes the partitions and for which each cycle
of o has non-empty intersection with at least four partitions of G(r), has a hamiltonian path, is
established. The graph obtaired from G(r) by adding a vertex u constituting (r+ 1)-st partition
of G{r). which is the fixed peint of ¢ = (u}o also has a hamiltonian path. The last two resulis
generalize the result that every scif-complementary graph has a hamiltonian path.

Introduction

The word “graph™ will mean a finite, undirected graph without loops and
multiple edges. For the notation and te'minology not defined here we refer to
Harary [4].

An “r-partite graph”™ G(r) is a graph whose vertex set V= V(G{(r)) can be
partitioned into r= 1 non-empty subsets. also called partitions. so that no edge
has both ends in anv one subset. Let A,,.... A, constitute an r-partition of V
with |Al=nm. m=1(=1..... r).

An r-partite graph G(r) is said to be “‘complete r-partite™ if each vertex is
joined to every other vertex that is not in the same subset. Such a graph is
denoted by K,,, . .. Clearly. K, , hasYi ,n, vertices and Y].,_, ng; edges.

Bipartition of a connected graph, if exists, is unique. But, in general. r-partition
of a graph need not be unique. Henceforth, if G(r) is given to be an r-partite
graph, we assume that an r-partition of G(r) is prescribed.

The “‘r-partite complement” G(r) of an r-partite graph G(r) is again an
r-partite graph with vertex set V(G(r)). satisfying the following conditions:

(i) for uve A, 1<i<r:(uv)é¢ E(G()).
(i) for ue A, ve A, Isi#Fj=r:(uuv)e EGw) iff (uv)é E(G(n):.

An r-partite graph G(r) is said to be “‘r-partite self-compiementary” (r-p.s.c.) if
there exists an r-partition of V(G(r)) with respect to which G(r) and G(r) are
isomorphic.
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230 T. Gangopadhyay. S.P. Rao Hebbare

The concepts r-partite complement and r-p.s.c. graph are first defined and
studiad in Hebbare [5].

Remark. The class of classical self-complementary (s.c.) graphs, first studied by
Ringel [7], and Sachs [8]. is included in the class of r-p.s.c. graphs, with r=1 and
n;= - =n=1. We refer to a survey article by Bhaskara Rao [1] and the
references given in theve, for most of the existing literature on s.c. graphs.

Let G(r) be an r-p.s.c. graph with the vertex set V(G(r)={1,2...., p}. Then
tire isomorphism between G{r) and G(r) can be represented as a permutation o
in the set V(G(r)). We then write, o(G(r))=G(r), and call o an “r-partite
complementing permutation” (r-p.c.p) for G(r). We assume that, all permutations
are expressed as the product of disjoint cycles. Further, we do not distinguish the
symbol: of the permutation and vertices of the graph. Now, let ¢ =0, - o, be
the disjnint cycle representation of 0. A c¢ycle, o, (i=1,....A) of ¢ is said to be
“pure” if ¢; € A, for some je{1,2,.... r} and “mixed” otherwise. In other words,
a mixed cycle of o contains vertices from at least two partitions of G(r). Let
C€(G(rY). 6,05(r)), and €,(G(r)) denote the set of all r-p.c.p.. r-p.c.p. each of
whose cycies 1s pure, and r-p.c.p. each of whose cycles is mixed, of G(r). We
simply write €, €, and €, for the above sets when there is no confusion. We list
here some observations and theorems from Gangopadhyay and Hebbare [3]
which will be useful in what follows.

Observation 1. Let G(r) be an r-p.s.c. graph and ¢ € €. Then for any two vertices
u and v belonging to different partitions of G(r), (u. v)€ E if and only if (o(u).
o(v))¢ E where (k. v) denotes an edge of G(r).

Observation 2. For an r-p.s.c. graph G(r). Y7o, . mn; must be even, In particular,
when r=2, n, or n, must be even and when r =3, at least two of n,. n, and n,
must be even.

Observation 3. Let {0;....,0, } be a subset of the set of cycles cf o where
1=p =< such that the union of a;,. ..., o;, has non-empty intersection with k
partitions (1 =<k <r) of G(r) and with no other. Then the graph induced on the
vertices of oy, ..., 0y, is a k-p.s.c. graph with a k-p.c.p. being o* =0, - - oy
An r-p.c.p. o of an r-p.s.c. graph G(r) is said 10 be periodic if o maps each A,
into some A,. The class of all periodic r-p.c.p.’s of G(r) is denoted by €*(G(r)).

Theorem 1.1. Let G(r) be an r-p.s.c. graph and let o< €*. Then o€ Aut G(r),
where Aut G{r) denotes the group of all automorphisms of G(r).

In particular, if o is a bi-p.c.p. of a connected bi-p.s.c. graph G(2). then
a’e Aut G(2), and if o is a p-p.c.p. of a p-ps.c. (i.e., s.c) graph G(p). then
o’e Aut G(p).
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Letoce€ and o =0, - - 0,. A mixed cycle g, of o, with |0, = ke, issaid to be a
“(k. a)-cycle” if o; has exactly a =1 vertices from each of the k =2 partitions,

say, Ay, ..., A, of G(r) in the following order:

O ={Upy Uz Uz Ui Uka)
where

UmcA (=1, kim=1..... «).

Theorem 1.2. Let G(1) be an r-p.s.c. graph and let o€ €*. Let o, be a mixed cycle
of ¢ having non-empty intersection with k of the partitions of G(r) and with no
other. Then |ol=ka, for some k=2, a=1 and o, is a (k. «)-cycle. Further,
k =0 (mod 4) when « is odd.

Theorem 1.3. Let G(r) be an r-p.s.c. graph and let o€ €*. Let o, be a (k. a))-
cycle of ¢ having non-empty intersection with A,, ..., A, in the same order. Then
the following hold:
(a) Any other cycle o, of o having non-empty iersection with any of the
partitions A,. ..., A, is again a (k. a,)-cycle, for some a,= 1 and o, = | J¥_ | A,
{b) The order of the partitions of o, is same as that of o, upto a cyclic
permutation.

As a consequence of Tneorems 1.2 and 1.3 it follows that cycles of any
connected bi-p.c.p. of a bi-p.s.c. graph are either all pure or 2]l mixed.

Theorem (Rédei [6]). Let C be a set of n elements with a refation < such that, for
all a and b (a# L) in C, either a<b or b<a. Then the clements of C may be
arranged in a sequence a; <a,<+--<aq,.

Note that, Rédei’s theorem is equivalent to saying that every finite tournament
has a hamiltonian path.

S.c. graphs by their very nature enjoy nice properties such as that every s.c.
graph G has a hamiltonian path, a fa<t proved by Clapham [2); if 5 =8, for every
integer [, 3<!<p-2, G has an I-cycle and furthermore. if G is hamiltonian then
G is pancyclic. Hence, the class of s.c. graphs can be classified into three classes
according as the circumference being »-2, p-1 and p. Further, each of the above
three classes of s.c. graphs is characterized in terms of degre sequences, in
particular. the case p characterizes the class of hamiltcnian s.c. graphs. All these
facts are proved by Bhaskara Rao and we refer to [1] for the relevant references.

The class of r-p.s.c. graphs is a natural generalization of s.c. graphs in the class
of simple (without loops and multiple edges) graphs. In particular, we have the
feeling that most of the results in s.c. graphs inay be generalized or extended to
r-p.s.c. graphs, especially to r-p.s.c. graphs with an r-p.c.p. € €™ consisting of only
(k. a)-cycles.
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Structural properties of r-p.c.p. of r-p.s.c. graphs are considered in Gan-
gopadhyay and Hebbare [3] wherein. besides the results stated above, a generali-
zation of Ringel and Sachs’ Theorem (See [1]) for s.c. graphs to r-p.s.c. graphs is
given.

This paper aims at determining the maximum length of a path that exists in any
r-p.s.c. graph. It is shown that. every connected bi-p.s.c. graph G with €, # ¢ has
a (p-3)-path, (i.e. a path consisting of exactly p-* edges and p-2 vertices) and that
this result is best possible and that G has a hamiltonian path if the graph induced
on each cycle of a o € 6, is connected. Lastly, the fact that for r =4, every r-p.s.c.
graph G(r) with a o € €% such that each cycle ¢; of ¢ has non-empty intersection
with at least 4 partitions of G(r), has a hamiltonian path, is also established.

The graph obtained from G(r) by adding a vertex u constituting (r+ 1)-st
partition of G{r)., which is the fixed point of ¢* = (u)o. also has a hamilionian
path. The last two results generalize the resalt of Clapham [2].

The proot technique employed in proving the results in this paper is essentially
similar to the proof technique in Clapham [2].

2. Paths in bi-p.s.c. graphs

Theorem 2.1. Everv connected bi-p.s.c. graph G(2) of order p with €_,## has a
(p-3j-path; this statement is best possible.

Proof. Let o€, and o =0, ' - o, be its disjoint cycle form. We then consider
two cases according as (i) A = 1. and (ii) A > 1.

Case 1. A=1. Let o=(1 2...n) where n=41 t=]1 (n=0(mod1} by
Theorem 1.2). Without loss to generality, we can assume that (1,2)e E {(for
otherwise, (2, 2)e E and we can conside: o =(23---n 1)), Since o7 e Aut G(2).
we tet that (i, '+ 1)e E for all i odd.

If t=1, then G consists of two copies of X-.

Suppose that. > 1. Then two cases arise aceording as (1, 4)€ E or not.

If (1.4)e E, then (i, i+3)e E for all odd i. Ii: this case.

1,4,3,6,....4.41-1,2. 1

is a hamiltonian cycle.
If (1.4) ¢ E, then (2,5)¢ E and hence (i, i+ 3)e E for all i even. In this case.
G(2) has two disjoint 2t-cycles as follows:

C:1,2,5.6,...,41-7, 41-6, 41-3, 41-2. 1
and

C3:3.4,7,8...., 41-5,4¢-4.4¢-1, 41, 3.
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Remark. The cycle C3,(C3) has the vertex labels=1 or 2(mod4) (=0 or
3 (mod 4)) and they appear alternatingly.

Since G(2) is connected there must exist an edge from some vertex of C3, to
some vertex of CZ,. Then G has a hamiltorian patl..

Case 2. A>1. Let
a; = (ui]ui?_ T ul.4!|)* (' =1..... /\)

where lo;]=4t. (i=1....,A). Theneacha; (i=1,...,) \) is one of the following
three tyoes:

{1) {o,) is hamiltonian.
(2) {¢;) has two disjoint 2t-cycles.
(3) {o1)=2K..

Let o have A; cycles of type i {i = 1, 2, 3) and accordingly arrange the cycles -f
o such that the first A, cycles are of type 1. the next A, cycles are of type 2 and
the last A; cycles are of type 3, as follows:

o=0 By By
[SE—) [S—)
Type 1 Type 2 Type 3

where A = A+ A5+ A5

We now defire an ordering between two cycles of certain type. First, for any «,.
o; cycles of type 1. we write «; < g if there is an edge from some even vertex of g
to some odd vertex of o; where i# j, I<ii j<Ajandu;ec, (i=1,.... A) is said
to be odd or even according as j is cdd or even. Notice that, if o; <a; then every
even vertex of «; is adjacent to some odd vertex of ¢, and every odd vertex of ¢;
is adjacent to some even vertex of «;.

Now, if o; ¢ oy, then (u;,. 4:)¢ E, which implies that (1. ;)€ E and hence
a; <a;. Thus for any two cycles o, o; of type 1 either a; <o or o; <o; holds.

Observation 4. (i) o, <¢; 2nd o; <@; may both hold.
(1) & < ¢; and o; < oy do not imply o; < e, Where o, o, o are cycles of type 1.
By Rédei's theorem the cycles of type 1 may be arranged. after suitable
relabelling, as follows:
o <a< s <a,,.

Consider now B;, B;. cycles ¢f type 2, where i#j, 1=<i, j=<A,. Recall that ¢ach
such cycle B; of length |B|=4s (i=1....,A,) induces a subgraph (B;> which
contains two disjoint 2s;-cycles as follows:

Cé&: Uite Uiae Uiss Vi -+ -+« Uias-6e Vias-3+ Vias-2- Uiy
and

2, .
C26, 103, Digs Uizs Ui - -+ » Vigseas Viago1s Vidse Viae
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We shall write B, > B, if there is an edge from some odd vertex of C3, i0 some
even veriza of C),, and in this case we write that C} > C3,. Also, it can be easily
seen that, C3,>C3,.

Now, if B,# B, that is, if C3,# Cj then (v, v)¢ E and hence (v, v;5)€ E
which implies that C, >}, Thus interchanging the roles of C, and C}, we get
B; > B.. Thus for any two cycles B8; and 8; of type 2 either B, > B; or B5; >, holds.
(Observation 4 is true for B;’s (i=1,...,X,).) {ence, by Rédei’s Theorem the
cycles of type 2 may be arrarged after suitable relabelling as follows: g,>3,>
R N

Lastly, let % and y, be cycles of type 3, vhere i#], 1<i, j<A,, each (y)
consists of two copies of K, say, K} =(w,,wa) and KI;=(wa wy)
(i=1,...,A3). We write v,>v; if K},>K},, that is, when (w;;, w)€ E. This
implies that K3,>K3; since (w3, wa)€E. If v,7 v, then (w,,, w;»)¢ E, that is
(wi2, w;3)€ E and hence K3 ;> K3 ;. In this case, by interchanging the roles of K3,
and K3; we obtain that v, >y, Thus for any two cycles v; and v; of type 3 either
¥:>; or v; >; holds. (Notice that Observation 4 is true for v,’s (i=1,...,A3).)

Hence by Rédei’s Theorem cycles of type 3 may be arranged after suitable
relabelling as follows:

Y1 Y2> Y

Now, let B; and v; be cycles of type 2 and 3 respectively. We write 3, >y, if
C},> K3 that is. there is an edge frem some odd vertex of Cj, to w;,. Also it
follows that C3,> K3 ;. Analogously, ;> @; means that there is an edge from Wi
to some even vertex of Ci,. If B, # v, then (v;,, w,)¢ E that is (v;,. w;-)e E and
hence K3;>>C},. Now. by interchanging the roles of K1, and K2, we get that
¥ > B:.. Thus, for any cycles 8, of type 2 and v, of type 3 either 8, >, or v,> 8,
holds. Hence, by Rédei’s Theorem the cycles of type 2 and 3 may be arranged
after suitable relabelling as follows:

8M+l>6)\|+2>. © > 8,

where each (8;) is spanned by two cycles or copies of K,, say, 3! and 8. Two
cases arise according as (a) A, >0, A,+A5=0, and (b) A, =0, A,-+A;>0.

Case (a) A;>0, A +A;=0. Choose B=a,, C=aq,, and, if A, +A;>0, A =8},
and D =§j ,,.

We write A > B (C> D) if every odd vertex of A(C) is adjacent to some even
vertex of B(D). Note that if A¥ B, then every even vertex of A is adjacent to
some odd vertex of B and if C# D, then given any even vertex v of C either v or
o?(v) is adjacent to some odd vertex of D). We also observe that if u is an odd
vertex of € and u is adjacent to v, w in the hamiltonian cycle in C, then either
v=0%w) or w=02v). Thus if C#D, then there is a hamiltonian path in C
which starts at any given odd vertex of C and ends at an even vertzx of C which is
adjacent to some odd vertex of D. We now consider the following four cases. In
each of these cases we shall specify a (p-3)-path in G(2).
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Case (a.1). A>B,C>D. A>B implies that each odd vertex of A is
adjacent to some even vertex of B. Since, C > D the same thing holds between
them. The (p-3)-path is as follows (see also Fig. 1):

Start with any even vertex in 8, .,, cover all the vertices of it traversing along
the cycle (or K,) ending up in an odd vertex. This odd vertex leads to an even
veriex of & {‘Q and cover all the vertices of it from this even vertex. Proceed until
an even vertex of 8} is reached and cover ail its vertices, the end vertex being odd.
Since A > B, this odd vertex leads to some zven vertex of B. Cover all the vertices
of B from this even vertex, except the last odd vertex, the end vertex being even.
This even vertex leads to an odd vertex of a,, from which cover all its vertices, the
end vertex being even. Thus proceed until an odd vertex of «,, is reached, from
which cover all its vortices except the last even vertex. The last odd vertex leads to
an even vertex of D from which cover all its vertices, the last vertex being odd.
This in turn leads to an even vertex of 8% ., from which cover all its vertices
ending in an odd vertex. In this way all the vertices of 87 ,5 83 can be covered.

The path described above is a (p-3)-path which misses exactly two vertices, one
from each of a; and a,,.

In all the other three cases we shall describe the (p-3)-path through figures.

Case (a.ii). A>B, C# D. The (p-3)-path in this case is as shown in Fig. 2,
which misses exactly two vertices, ons from each of 87 ,, and a,.

Note that. if the vertex missed by the path is in a part of cycle of type 3 then
simply we cover one vertex of the corresponding K, and go to the succeeding
cycle. We assume the same in what foilows, whenever such a situation arises.

Case (a.ii). A¥B, C>D. The (p-3)-path in this case misses exactly two
vertices of G(2), one from each of 8} and «,, and is as shown in Fig. 3.
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Case (a.iv). A#¥B, C¥ D, or A;+A3=0. Ii A, +A,>0, the (p-3)-path misses
exactly one vertex from each of 8} and 87 ,,, and is as shown in Fig. 4.
If A,+A;=0, that is if all cycles of o are of type 1, then, clearly, G has a
hamiltonian path, see Fig. 4 (only the type 1 part).
Case (b). A;=0, A,+A,>0. In this case, the cycles & (i=1,...,A) of ¢ may
be arranged as follows:

§,>8,>->8,
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where A = A,+ A5 and each (8, ) is spanned by wwo cycles or copies of K, viz. &{,
Spk=1...., A). We now consider the following three cases:

Case (b. 1). An odd vertex of 8} is adjacent to some even vertex of 87. Then
every odd vertex of 8] is adjacen: to some even vertex of 8}. In this case we have
a hamiltonian path as exhibited in Fig. 5.

Case (b.ii). An odd vertex of 8} is adjacent to some even vertex of 8}. Then
every even vertex of 8] is adjacent to some odd vertex of 8 and every odd vertex
of 82 is adjacent to some even vertex of 82, Let V,, = i, 87 (m = 1,2). Since G
is connected. there is a vertex u,, € V,, {(m =1, 2) such that (u,, u,)€ E. Let u, € 8!
and u, e 87 for some (i, j=1,..., A). Without k ss of generality, we can take u; to
be odd and u, to be even. Otherwise, we can interchange the roles of 8} and 87

for each (k =1,...,A). We now construct a hamiltonian path, as exhibited in Fig.
6.
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Case (b.iii). Every even vertex of 8, is adjacent to some odd vertex of 8. In
this case we exhibit a (p-3)-path, which misses exactly one vertex each in 8, and
87. as exhibited in Fig. 7.

This completes the proof of the first part of the theorem.

In order to show that the resuli is best possible, we exhibit an infinite class of
bi-p.s.c. graphs having a (p-3)-path and no (p-2)-path. For this, by Observa-
tion 2. in connection with the hypothesis €, # ¢, it is enough to construct such
examples for the order p =4t where n; =2t = n,.

Let H=H, be the graph shown on Fig. 8(a). Define, H, (See H, of Fig. 8(b))
such that V(H,)= V(H,_;,)U{u,. . v, x;} and that H; contains H; ; as an induced
graph on V(H,_,) with the additional edges as follows:

(w. b), (v, b) forall be B,_,.
(u, w) and (uv.x).

where (A;_;, B;_,} is the bipartition of V(H,_,}. Then, H, is of order p==4i+4
and is a bi-p.s.c. graph. for each i=1 and the following permutation o; is a
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uﬂ\ ACJ1
H\\\

u - e U

v o— ><1

y /

1 Xy

(8) Hy

bi-p.c.p. of H;:
o luxiviw) (U x, oy wuxovw).

A (p-3)-path of H, is as given below:
U, X Ups Xy, Ugy Xg Uae s e ey Ui ps Xie o U W, Uy,
Wie Up, Wou Uz Way ool Uiy, Wiy, Uy, Wi

Notice that, the vertices x; and u are missing in the above path.
Finally, since H, contains 4 vertices of valency 1 (namely, u. v, x;, w;) there
cannot be a (p-2)-path. This completes the proof of the theorem.

Theorem 2.2. Let G(Z) be a bi-p.s.c. graph with bi-p.c.p. o€ €., # ) such that the
graph induced on each cycle of o is connected. Then GG(2) hes a hamiltonian path.

Proof. let =0, - o, €%, (o) is connected implies that G is connected and
that |oy|=8. and loy/=0(mod4) for each (i=1,...,A). Let lo[=41.
(i=1..... A). Further, let

Without loss to generaiity, we can assume that (1, u;,) € E. Since o® € Aut G(2),
(W, wi;) € E fer ail odd i. Suppose now that, (. u4)€ E. Then (. u;j.3)c E
for all odd j. In this case, we have the following hamilton:ian cycle:

Uity Uigs Uyns Wiy Ups, Uige Uigs oo U g 38 ags Uiag—1- Wi, Uiy

Such a cycle g; is called of type 1.
In the other case, that is if (u,. w.)¢ E, then (w,, ys)cE and hence
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(w4, u;;5)€ E for all even j. In this case, we have two disjoint 2t-cycles as
follows:

1.

Czti. Uy, Wiy Uis, Ui Uigs Ui 1e - - - s Wyag 30 Wigg 25 Uiy
2 .

G5t Uiz, Uiy, Uigs Uigs Uiy Uiaz - - - Uiag—1s Uidgs Uiae

Such a cycle ¢, is called of type 2. In this case, since {o;) is connected, there is
w; €{CL,) and uy €(C3) such that (u, uy) € E, where either j is odd and k is
even, or, j is even and k is odd. In either case. since o’ e Aut G(2). we have that
for any u; e(C},) with j odd, there is an uy e(C%,‘) with k even and for any
u; € (C3,) with j odd, there is an uy €(C3,) with k even such that (u;. 1, )€ E.
Now, given any even vertex of (C},) (resp. {C3,)) there is a path along C3, (resp.
C3,) which covers all the vertices of (C},) (resp. {C3)) and ends up ir an odd
vertex say u; of (C3,) (resp. (C3,)); this odd vertsx is adjacent to some even vertex
say g of (C%,) (resp. (C},)) and one can continue along C3, (resp. CL,) in a path
which ends up in an odd vertex of (C3,) (resp. (C3,)). Thus, if a; is a cycle of tvpe
2, given any even vertex u of o; there is a hamiltonian path in g; which starts
with u;x and ends up in an odd vertex of ;. Note that the last observation also
holds if a; is a cycle of Type 1. Thus, given any cycle ¢;. and an even vertex uy in
(o), there is a hamiltonian path in {(o;) which starts from w and ends up in an
odd vertex of {o;).

Now, we order o4, ..., g, in the following manner. We shall write ¢; >¢; if an
odd vertex of o; is adjacent to an even vertex of g;. Evidently, if 0,3 0. then
o, >o; follows. Hence, by Rédei’s Theorem. the cycles of o may be ordered by
suitable relabelling as follows: o, >0,>- - - >0,.

We now start with any even vertex ug, of o,. We know that there is a
hamiltonian path in (o) which starts with w,, and ends up in an odd vertex of o,.
Since o, >0, this odd vertex is adjacent to some even vertex i, of 0. There is
a hamiltonian path in {c,) which starts with u;_and ends up in an odd vertex of
o,. From this odd vertex we proceed to an even vertex uy, of o5 and so on. This
gives us a hamiltonian path.

Thus, G has a hamiltonian path with any even vertex of ¢, as an end vertex.
Similarly, reversing the procedure, we can get a hamiltonian path with any odd
vertex of o, as an end vertex.

3. Hamiltonian paths in r-p.s.c. graphs with €¥# ¢
Theorem 3.1. Let G(r) be an r-p.s.c. graph, r =4 with an r-p.c.p. o€ €+ {} where
each cycle of o has non-empty intersection with at least four partitions of G(r).

Then G{r) has a hamiltonian path.

Proof. 'The proof goes on similar lines as that of Clapham [2].
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Let =0, ' - o, €€* Then by Theorems 1.2 and 1.3 wc conclude that each
o i=1...., A) of o is a (k. o;)-cycle, where k, =4, by hypothesis.

To begin with, we consider two cases according as (1) A =1, and (2) A>1.

Case 1. A=1. For convenience. let o be a :«, a)-cycle. k=4 and o=
(123 - ka), where |o}=ka, is even. We first assume that (1,2)¢ E.

If k=4and a=1,then 2,1,3,4 or 1,2, 4.3 is the required hamiltonian path,
Otherwise, since ka is even, it follows that k =4 and a =2. Then (1, 4)e E if and
only if (4, 7) ¢ E. Hence, we may suppose that either (a) (i, i + 3) ¢ E for all odd i,
or (b) (j. j+ 3 e E for all even j.

In case (a). we consider the hamiltonian patks P, or P, according as (1. 3}e E
or (2,4)e E where

P:2.1.4.3.6.5.... , ka—2, ka3, ka.
Py:1.4.3.6.5.8,.... ka—-3,ka, 2, ka—1.

In case (b), we construct a hamiltonian path P as follows. L.et P; be the path
1,2,5,6,9,10,..., the last term being ka—2 or ka according as ta=0 or
2 (mod 4), and P, be the path 3,4, 7. 8, 11, 12, .. ., the last term being k« or ko —2
according as ka=0 or 2 (mod 4). Then P is obtaincd by combining P, and P,,
using the edge (1, 3) or (ka — 2, ka) whichever exists. (Mote that since o € Aut G(r),
either (1.3)e E or (ka—2, ka)€E.

If (1.2)¢ E. then (2. 3)e E and the proof is similar. In any case, since o’¢
Aut G(r), we have the following

Remark. Either (i) for any iwo consecutive odd vertices of o, there is a
hamiltonian path in which they appear consecutively and (ii) for any two consecu-
tive even vertices of o, there is a hamiltonian path for which they are end vertices,

or, (i)’ for any two consecutive even vertices of ¢, there is a hamiltonian path in
which they appear consecutively and (ii)’ for any two consecutive odd vertices of
o, there is a hamiltonian path for which they are end vertices.

Case 2. A > 1. Then by the Remark made in Case |, it follows tha: any cycle o,
of o satisfies either (i) and (ii) or (i)’ and (i1}, A cycle g; of o is said to be of type
1 if it satisfies (i) and (ii), and is of type 2 if it satisfies (i)’ and (ii)'.

We now define an ordering between any two cycles of o as follows:

Let o; and o; be cycles of o of type 1. Then we write o, <o; if suv-ne cven
vertex of o; is adjacent to some odd vertex of o;. Ther, it can oe easily seen that if
oL o; then u; <o

Hence, for any two cycles o, o; of o of type 1 either 0. <g;, or 0; <o; holds,

Let o0; and o; be of type 2. We write o, <o; if an odd veriex of g; is adjacent to
some even vertex of ;. Again, it follows, with this ordering. that either ¢; <o;. or
o; < o; holds.

Lastly, if ¢; and o; are of types 1 and 2 respectively. we write o; <o if an even
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vertex of o is adjacet to some ever: vertex of oy, and o; <o if an odd vertex of
o; is adjacent to some odd vertex of o;. Then if o, € a; it follows that o; <o,
Hence, either o; <o; or o;<g; holds in this case also.

Thus for any two cycles o; and o of ¢ either o; <o, or g; <o; holds. Hence by
Rédei’s Theorem the cycles of ¢ can be ordered by an appropriate relabelling of
a; s as follows:

O <0< -<a,.

Now, each {(o;) is a k-p.s.c. graph for some k=4 and bv Case 1 there is a
hamiltonian path in each (o;)(i=1.....A). For o, and o, we consider the
following four cases according to their types:

Case 2(a). oy and o, are both of type 1. Ther there is a hamiltonian path in
{o;) with its end vertices at consecutive even vertices. say. u,; and u,,,, of o,.
Since o, <02, (U, uy;) € E for some odd j and hence (u; ;45 Ua;,,) € E where the
second suffix of a vertex is reduced modulo the length of the cycle containing it.
Now, since o is of type 1, there is a hamiltonian path in {g3) with uy; and uy .o,
with odd j, appearing consecutively. We can now obtain a hamiltonian path in
{g1U0ay) by inserting the hamiltonian path of (o) between u,; and u,,,, in the
hamiltonius path of (o).

The remaining cases are dealt with in an analogous way:

Case 2(b). o, is of type 1 and o, is of type 2. In this case. we can obtain a
hamiltonian path in (¢, Uo,; by inserting the hamiltonian path of (o) (its end
vertices being consecutive even vertices uy; and u, ., of o) between u,, and
U ;.> of the hamiltonian path of () (this is possible since, o, < o> implies that,
for some even j, (uy;, uz), (Uy 0. tiz;42) E and us;, u, ;.- appear consecutively).

Case 2(c). o, and o, are of types 2 and 1 respectively. In this case, a
hamiltonian path of (¢, U o,) can be obtained by inserting the hainiltonian path of
{v ) (its end vertices at consecutive odd vertices u; and u,;., of o) between u,,
and u, .,  the consecutive odd vertices appearina consecutively in the hamilto-
nian path of {a,) with odd j.

Case 2(d). o, and o, are both of type 2. In this case, the hamiltonian path of
(o). with its end vertices being consecutive odd vertices uy; and u, ;... is inserted
between u,; and u,;,,—the consecutive even vertices in the hamiltonian path of
{o,) which gives a hamiltonian path in (o, Uo,). _

Thus it is possible to construct a hamiltonian path in (o, U ,), where o, <o,
Next, in a similar way this hamiltonian path can be inserted into a hamiltonian
path of (o3). and so on. Theer m 3 1 is now proved.

Note that the hamiltonian path constructed in the above proof has the following
properties:

(1) It has two consecutive odd (even) vertices of ¢, appearing consecutively if
o, is of type 1 (type 2).
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(2) Its end vertices are consecutive even (odd) vertices of o, if o, is of type !
(type 2).

(3) For 0y <gy, (i=1,...,A), it has some u; and u,,, appearing consecu-
tively where j and k are as follows: \

j even and k odd, if g, 0,,, are both of type 1,

j even and k even, if o; is of type 1 and o, is 07 type 2,

; odd and k even, if o; and o,,, are both of type 2, and

j odd and k odd, if o; is of type 2 and o;., is of "ype 1.

Let G(r+1) be an (r+1)-p.s.c. graph with an (r+ D-p.c.p. o*=(u)oec €*
where u is a fixed vertex. A,,,={u} and all other cycles of o has non-empty
intersec*ions with at least four partitions of G(r+ 1). Thzn we have the following:

Theorem 3.2. G(r+1) has a hamiltonian path.

Proef. Let G(r) be the subgraph induced by ¢ in G(r+ 1). Then G(r) satisfies the
conditions of Theorem 3.1.

Now consider the hamiltonian path h in G(r) es deseribed in Theorem 3.1, It is
composed of several paths each being hamilionian within a cycle of o By the
properties (1). (2) and (3). consecutive vertices (say) u;. u;;., of same parity
appear consecutively withir hamiltonian path of o; and consecutive vestices of
opposite parity to u; and u,;,, appear as end vertices within that hamiltorian path
h. Further, if u is adjacent 0 a vertex u; of o, then u is adjacent to all the
vertices of o; with the same parity as that of i; and u is not adjacent to all other
vertices of o;.

Now, let uy,. uy ;.. be two vertices of same parity appearing consecutively in h,
where h; denotes a hamiltonian path ii. (o) (i=1,....A). Suppose that, u is
adjacent 0 u,;. Then (u, u, ;.)€ E and hence u can be incorporated in between
u,; and u,,.» in h and we get a hamiltonian path of G(r+ 1).

Now, let u,, be an end veriex of h, {(and hence by (2) also that of h). If
(u. uy) € E. we exiend h so as o include u.

If neither of the above two cases is possible, then u is adjacent to vertices in o
having opposite parity with u,;. But, h;, has one such vertex as its end vertax.
Therefore, u is adjacent to this end vertex of h,. By (3) this vertex is adjacent t¢ a
vertex of o in h. If u is adjacent to this vertex of o, also. then we are through.
Otherwise. u is adjacent to vertices of opposite parity in o,. As h, has one su:h
end vertex. u is adjacent to it. Thus we proceed; we :.ay find an i, I1<<i=A~ 1
such that (i, u; ;)€ E and u is also adjacent to the consecuiive vertices i, ,, and
W, 2 @appearing consecutively in hy,,. But (4, u;. )€ E or (U Ui q .)€ E inh
and we accommodate u between either u; and y;., . or ¥, and u; ., as the case
may be. If there is no such i, then finally we get that u is adjacent to the end
vertices of h,_, and u is not adjacent to the vertices appearing cunsecutively
within h,. Then 11 must be adjacent to the end vertices of h,, contrary to the
assumption. This proves the theorem.
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Corellary 3.3. (Clapham [2]). Every s.c. graph has a hamiltonian path,

Lastly, we remark that, the results of this paper are not direct consequences of
the sufficient condition given by Chvatal in terms of degree sequences and hence
the special proof technique of Clapham is needed.
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