
Civil and Environmental Engineering Faculty
Publications Civil & Environmental Engineering

7-13-2011

Development of Sstreamflow Projections Under
Changing Climate Conditions Over Colorado
River Basin Headwaters
W. P. Miller
wmiller@usbr.gov

Thomas C. Piechota
University of Nevada, Las Vegas, thomas.piechota@unlv.edu

S. Gangopadhyay
Technical Service Center

T. Pruitt
Technical Service Center

Follow this and additional works at: http://digitalscholarship.unlv.edu/fac_articles

Part of the Environmental Engineering Commons, and the Geotechnical Engineering Commons

This Article is brought to you for free and open access by the Civil & Environmental Engineering at Digital Scholarship@UNLV. It has been accepted
for inclusion in Civil and Environmental Engineering Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more
information, please contact digitalscholarship@unlv.edu.

Citation Information
Miller, W. P., Piechota, T. C., Gangopadhyay, S., Pruitt, T. (2011). Development of Sstreamflow Projections Under Changing Climate
Conditions Over Colorado River Basin Headwaters. Hydrology and Earth System Sciences, 15(7), 2145-2164.
http://dx.doi.org/10.5194/hess-15-2145-2012

http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unlv.edu/?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalscholarship.unlv.edu/fac_articles?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalscholarship.unlv.edu/fac_articles?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalscholarship.unlv.edu/cee?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalscholarship.unlv.edu/fac_articles?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/255?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.5194/hess-15-2145-2012
mailto:digitalscholarship@unlv.edu


Hydrol. Earth Syst. Sci., 15, 2145–2164, 2011
www.hydrol-earth-syst-sci.net/15/2145/2011/
doi:10.5194/hess-15-2145-2011
© Author(s) 2011. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Development of streamflow projections under changing climate
conditions over Colorado River basin headwaters

W. P. Miller 1,2, T. C. Piechota2,3, S. Gangopadhyay4, and T. Pruitt 4

1United States Bureau of Reclamation, Lower Colorado Region, Boulder City, Nevada, USA
2Department of Civil and Environmental Engineering, University of Nevada Las Vegas, Las Vegas, Nevada, USA
3Associate Vice President for Interdisciplinary Research, Division of Research and Graduate Studies,
Office of the Urban Sustainability Initiative, University of Nevada Las Vegas, Las Vegas, Nevada, USA
4Water Resources Planning and Operations Support Group, Technical Service Center, Bureau of Reclamation,
Denver, Colorado, USA

Received: 16 July 2010 – Published in Hydrol. Earth Syst. Sci. Discuss.: 12 August 2010
Revised: 25 March 2011 – Accepted: 3 July 2011 – Published: 13 July 2011

Abstract. The current drought over the Colorado River
Basin has raised concerns that the US Department of the
Interior, Bureau of Reclamation (Reclamation) may impose
water shortages over the lower portion of the basin for the
first time in history. The guidelines that determine levels of
shortage are affected by relatively short-term (3 to 7 month)
forecasts determined by the Colorado Basin River Fore-
cast Center (CBRFC) using the National Weather Service
(NWS) River Forecasting System (RFS) hydrologic model.
While these forecasts by the CBRFC are useful, water man-
agers within the basin are interested in long-term projec-
tions of streamflow, particularly under changing climate con-
ditions. In this study, a bias-corrected, statistically down-
scaled dataset of projected climate is used to force the NWS
RFS utilized by the CBRFC to derive projections of stream-
flow over the Green, Gunnison, and San Juan River head-
water basins located within the Colorado River Basin. This
study evaluates the impact of changing climate to evapo-
transpiration rates and contributes to a better understand-
ing of how hydrologic processes change under varying cli-
mate conditions. The impact to evapotranspiration rates is
taken into consideration and incorporated into the develop-
ment of streamflow projections over Colorado River head-
water basins in this study. Additionally, the NWS RFS is
modified to account for impacts to evapotranspiration due to
changing temperature over the basin. Adjusting evapotran-
spiration demands resulted in a 6 % to 13 % average decrease
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in runoff over the Gunnison River Basin when compared to
static evapotranspiration rates. Streamflow projections de-
rived using projections of future climate and the NWS RFS
provided by the CBRFC resulted in decreased runoff in 2
of the 3 basins considered. Over the Gunnison and San Juan
River basins, a 10 % to 15 % average decrease in basin runoff
is projected through the year 2099. However, over the Green
River basin, a 5 % to 8 % increase in basin runoff is projected
through 2099. Evidence of nonstationary behavior is appar-
ent over the Gunnison and San Juan River basins.

1 Introduction

From 2000 through 2010, the Colorado River Basin has
experienced the driest period on record and one the worst
droughts in history (e.g, Timilsena et al., 2007). At the be-
ginning of water year 1999 (October 1998), water storage
in the Colorado River Basin was at 94 % capacity; in par-
ticular, the two largest reservoirs within the system, Lake
Powell and Lake Mead, were at 98 % and 91 % capacity, re-
spectively. Since 1999, water storage in the Colorado River
Basin has decreased to 55 % capacity at the conclusion of
2010 with Lake Powell and Lake Mead at 40 % and 59 % ca-
pacity, respectively. The current drought has increased con-
cerns on the ability of United States Department of the In-
terior, Bureau of Reclamation (Reclamation) to continue to
meet water delivery requirements (Barnett and Pierce, 2008,
2009; Barsugli et al., 2009; Rajagopalan et al., 2009) and
the impacts of climate change to hydroclimatology over the
Colorado River Basin and the American West (e.g., Balling
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Jr. and Goodrich, 2007; Brekke et al., 2008; Christensen
and Lettenmaier, 2007; Fassnacht, 2006; Matter et al., 2010;
Maurer, 2007; Meko et al., 2007; Miller and Piechota, 2008).
Previous research indicates warming temperature trends over
the Colorado River Basin region of up to 3◦C over the next
50 to 100 yr (e.g., Christensen et al., 2004; Hoerling and Eis-
cheid, 2007; McCabe and Wolock, 2008) and correspond-
ing changes in the timing of streamflow within the basin, re-
sulting in earlier peak runoff events (e.g., Christensen and
Lettenmaier, 2007; Hamlet et al., 2005; Hamlet and Letten-
maier, 2007; Hidalgo et al., 2009; Kalra et al., 2008; Miller
and Piechota, 2008; Regonda et al., 2005; Timilsena and
Piechota, 2008).

Traditionally, Reclamation has used historical data to
project future streamflow conditions and associated reser-
voir operations. Implicit in this practice is the assumption
that the distribution of past data (e.g., mean, variance, stan-
dard deviation) is representative of future conditions. Under
changing climate conditions, the past may no longer be rep-
resentative of the future (e.g., Brekke et al., 2008). Climate
change caused by anthropogenic influences has influenced
global climate and hydrology such that past hydroclimatic
means and extremes are no longer representative of expected
hydroclimatology (Solomon et al., 2007). Milly et al. (2008)
defines stationarity as the idea that natural systems fluctuate
within an unchanging envelope of variability. As such, the
assumption of hydroclimatic stationarity over the Colorado
River Basin under climate change may not be correct.

Water managers have traditionally relied on the assump-
tion of hydroclimatic stationarity to efficiently manage wa-
ter resources and environmental operations. The timing and
magnitude of runoff events is of particular importance, as ac-
tual and forecasted runoff events can impact the operation
of reservoirs (e.g., release schedules and magnitudes); how-
ever, climate change and anthropogenic alterations to basin
characteristics increase the difficulty in accurately projecting
streamflow conditions within hydrologic systems (e.g., Vil-
larini et al., 2009). Raff et al. (2009) developed a method-
ology to assess flood risk and runoff projections using pro-
jections of future climate. Raff et al. (2009) utilized temper-
ature and precipitation data from 112 Global Climate Mod-
els (GCMs) within the World Climate Research Programme
(WCRP) Coupled Model Intercomparison Project phase 3
(CMIP3) multi-model dataset (Meehl et al., 2007) subjected
to statistical downscaling and bias-correction (Maurer et al.,
2007) to drive the National Weather Service (NWS) River
Forecasting System (RFS) hydrologic model. Each of the
four basins investigated in Raff et al. (2009) exhibited the
potential for increased flood frequency under changing cli-
mate conditions, although the authors did acknowledge the
need for further study to more fully understand these results.

Other recent studies have developed alternative method-
ologies for incorporating temperature and precipitation pat-
terns over the Upper Colorado River Basin (Matter et al.,
2010). Christensen and Lettenmaier (2007) has previously

used downscaled projections of precipitation and tempera-
ture to develop transient projections of runoff over the entire
Colorado River Basin using the distributed Variable Infiltra-
tion and Capacity (VIC) model. Although this study does
utilize information from the VIC model, the models and data
sources presented in Raff et al. (2009) are more similar to
those utilized here.

The development of a methodology to develop streamflow
projections for use in river and reservoir management mod-
els is described. An important contribution of this work is
the evaluation of the impacts of changing climate to evapo-
transpiration demand rates. The need to address evapotran-
spiration demand in climate studies over the Colorado River
Basin has been documented by Brekke and Prairie (2009).
The impact to evapotranspiration demands under changing
temperature is taken into consideration and incorporated into
the development of streamflow projections over Colorado
River headwater basins. Here, 112 projections of future cli-
mate conditions over the Colorado River Basin are integrated
with projections of future evapotranspiration to develop pro-
jections of streamflow conditions throughout the Gunnison,
Green, and San Juan River headwater basins. Projections of
streamflow are further investigated for evidence of nonsta-
tionary behavior.

1.1 Study area

The Colorado River Basin spans much of the American West,
providing water to seven basin states and Mexico. The Col-
orado River provides water to over 27 million people and
irrigates over 14 000 km2 of farmland while generating over
8 billion kilowatt hours of hydroelectric power annually. The
Colorado River Basin is divided between the supply-driven
Upper Colorado River Basin and the demand-driven Lower
Colorado River Basin; that is, water allocation in the Upper
Colorado River Basin is dependent on available resources,
whereas water is allocated based on demand in the Lower
Colorado River Basin. Of the approximately 18 500 mil-
lion cubic-meters (MCM) of inflow into the Colorado River
Basin, approximately 17 900 MCM is currently allocated an-
nually. The Colorado River Basin is unique from other wa-
ter management systems in that it has the capability to store
approximately four times (74 000 MCM) the average annual
inflow; most of the storage is concentrated within the Lake
Powell and Lake Mead reservoirs. Historically, inflow into
the Colorado River Basin is highly variable and typically
driven by snowpack in the Upper Colorado River Basin.

Projections of streamflow are developed over the Gunni-
son, Green, and San Juan River Basins (Fig. 1). Collectively,
the three basins contribute nearly 66 % of the average an-
nual water year natural flow in the Upper Colorado River
Basin. The basins in this study provide an opportunity to
cover a broad latitudinal range of the Upper Colorado River
Basin and compare results to other research efforts in the
area. Each of these headwater basins have been subject to
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Fig. 1. The Colorado River Headwater Basins considered in
this study encompass a broad range of the Upper Colorado River
Basin. For reference, the city of Denver, Colorado is located at
39◦44′21′′ N, 104◦59′5′′ W.

previous study and are accompanied by significant and in-
teresting water issues. The Gunnison River Basin has been
the subject of numerous studies, particularly for the appli-
cation of downscaled climate projections (e.g., Brekke and
Prairie, 2009; McCabe Jr., 1994; Raff et al., 2009; US De-
partment of the Interior, Bureau of Reclamation, Upper Col-
orado Region, 2009). Research on the impacts of telecon-
nection events on drought and streamflow conditions in the
Green River Basin have provided some insight as to the role
of teleconnections to climate variability over the Colorado
River Basin (Tootle and Piechota, 2003). The San Juan
River Basin is an example of a water management agency
actively working with stakeholders to adaptively manage a
reservoir system in response to changing environmental and
anthropogenic needs. Pursuant to the National Environmen-
tal Protection Act of 1969, an Environmental Impact State-
ment and Record of Decision were published in 2006 defin-
ing the operations of the Navajo Reservoir within the San
Juan River Basin to aid in the conservation of endangered fish
species, habitat, and continue to meet Reclamation’s obli-
gations to water delivery requirements and Native American
water rights (US Department of the Interior, Bureau of Recla-
mation, Upper Colorado Region, 2006).

1.2 Bias corrected spatially downscaled precipitation
and temperature data

Reclamation, in cooperation with Lawrence Livermore Na-
tional Labs and Santa Clara University, has made available
Bias Corrected Spatial Downscaled (BCSD) precipitation
and temperature data from the WCRP CMIP3 dataset over
the continental United States (available at:http://gdo-dcp.
ucllnl.org/downscaledcmip3 projections/and referenced as

BCSD CMIP3 herein) (Maurer et al., 2007). The BCSD
CMIP3 dataset utilized in this study considers three emis-
sions scenarios (A2, A1B, and B1) as described in the Spe-
cial Report on Emissions Scenarios produced by the Inter-
governmental Panel on Climate Change (Nakićenovíc et al.,
2000). This climate data has been downscaled to 1/8th degree
(approximately 12 kilometers or 7.5 miles) grid cell resolu-
tion, making it more useful for regional hydrologic analysis.
This data have been downscaled using the BCSD technique
described in Wood et al. (2004) and is available at a monthly
timestep. The method is documented in numerous peer-
reviewed academic studies (Cayan et al., 2007; Christensen
et al., 2004; Hayhoe et al., 2004, 2007; Maurer and Duffy,
2005; Maurer, 2007; Payne et al., 2004; VanRheenen et al.,
2004; Wood et al., 2004) and produces downscaled temper-
ature and precipitation data that statistically matches the his-
torical period. Brekke and Prairie (2009) previously applied
monthly BCSD CMIP3 climate data over the Gunnison River
Basin to generate projections of streamflow through 2099.
Brekke and Prairie (2009) note that mean annual runoff is
consistent throughout the 21st century, but explain that these
flows may be overestimated, as changes to potential evapo-
transpiration demand in response to future warming were not
accounted for.

Reclamation is developing streamflow projections over the
Upper Colorado River Basin using the VIC model and the
BCSD CMIP3 dataset described in this study for the Col-
orado River Basin Water Supply and Demand Study (Basin
Study) to examine the impacts of changing water supply
and demand conditions over the Colorado River Basin (US
Department of the Interior, Bureau of Reclamation, Lower
Colorado Region, 2009). The VIC model is run at a daily
timestep; as such, temporal disaggregation of data from
the monthly BCSD CMIP3 dataset over the Colorado River
Basin is required. Temporal disaggregation of the monthly
BCSD CMIP3 data was accomplished by scaling historical
daily precipitation or shifting historical daily temperature
data to match monthly time series data (Wood et al., 2004).
Daily precipitation and temperature time series have been de-
rived for the entire spatial and temporal extent of the monthly
BCSD CMIP3 dataset1.

2 Methodology

2.1 Hydrologic model

Reclamation is required to use streamflow forecasts by
the CBRFC for input into operational and policy models.
Streamflow forecasts developed by the CBRFC have the
potential to significantly impact reservoir operations over

1 This data is archived at the Department of Energy (DOE)
National Energy Research Scientific Computing (NERSC) Center.
This data was prepared and is made available by Andy Wood of the
CBRFC (andy.wood@noaa.gov).
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the Colorado River Basin. The CBRFC develops these
streamflow forecasts through use of the NWS RFS (National
Oceanic and Atmospheric Administration, National Weather
Service, 2005) applied over the Colorado River Basin. The
NWS RFS incorporates numerous models to develop unreg-
ulated inflow forecasts. The primary models within the RFS
and utilized over the Colorado River Basin are the Sacra-
mento Soil Moisture Accounting (SAC-SMA) model (Bur-
nash et al., 1973) and the Snow Accumulation and Ablation
Model (SNOW-17) (Anderson, 1973, 2006).

The NWS RFS model used here was provided by the
CBRFC and is run without taking into account regulation;
that is, the model is run without accounting for reservoir
operations or diversions within a basin. This allows for an
assessment of climate impacts to streamflow with limited
anthropogenic influence. The NWS RFS provided by the
CBRFC has been calibrated to observed streamflow within
the Colorado River Basin. This calibration is thus dependent
on historical climate input developed by the CBRFC. Aside
from input files associated with temperature, precipitation,
and evapotranspiration demand, the NWS RFS provided by
the CBRFC is otherwise unchanged in this study.

The NWS RFS is a lumped hydrologic modeling system.
Basins within the Colorado River Basin are divided into
catchments that may each be solved individually using the
NWS RFS. Each catchment may then be divided into up to
three elevation bands. These elevation bands are unique to
each catchment and are derived by the CBRFC; it is impor-
tant to note that the SAC-SMA model within the NWS RFS is
limited to three elevation bands per catchment, though some
catchments rely on only one or two elevation bands. Head-
water catchment input is primarily temperature and precipita-
tion through the MAT and MAP input files. Catchments that
are downstream from headwater and other catchments, de-
scribed as “local” catchments, incorporate runoff from head-
water catchments and other upstream local catchments in ad-
dition to precipitation and temperature input.

The NWS RFS incorporates mean areal temperature
(MAT) and mean areal precipitation (MAP) input files. Over
the water year 1976 through water year 2005 calibration pe-
riod, the CBRFC derives these files through the use of gage
measurements provided by a variety of sources (e.g., Na-
tional Oceanic and Atmospheric Administration , National
Resource Conservation Service , National Climatic Data
Center, United States Geological Survey (USGS), and Recla-
mation). In this study, MAT and MAP files are developed
using temporally disaggregated climate data from the BCSD
CMIP3 dataset.

The NWS RFS provided by the CBRFC relies on values
of evapotranspiration demand unique to each month; that is,
evapotranspiration demand in any given month is identical
throughout the length of the model run. For example, over
a two-year model run, evapotranspiration demand for the
month of January will be identical in both years; however,
this evapotranspiration demand may vary month to month.

Fig. 2. This flow chart illustrates how the NWS CBRFC RFS and
VIC model are utilized with multiple climate datasets to derive pro-
jections of streamflow.

In this study, evapotranspiration is derived as a function of
monthly average projected temperature. As such, a third in-
put file describing mean areal evapotranspiration (MAE) was
developed in this study. Figure 2 illustrates how these mod-
els and data sets were developed and integrated to produce
the projections of unregulated streamflow presented in this
study.

2.2 Derivation of MAT input files

The NWS RFS requires temperature input at a 6-h timestep.
The CBRFC derives 6-hourly temperature values using an
empirical relationship between daily maximum and mini-
mum temperature values. This practice is common between
river forecasting centers, though the empirical relationship
is unique to each river forecasting center. Empirical rela-
tionships are applied over all years and all seasons. For the
CBRFC, the empirical relationships derived over the Col-
orado River Basin are as follows:

00Z = 0.950×Tmin+0.050×Tmax−1

06Z = 0.400×Tmin+0.600×Tmax

12Z = 0.025×Tmin+0.925×Tmax

Hydrol. Earth Syst. Sci., 15, 2145–2164, 2011 www.hydrol-earth-syst-sci.net/15/2145/2011/
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18Z = 0.670×Tmin+0.330×Tmax (1)

whereZ denotes Coordinated Universal Time (UTC, some-
times referred to as Zulu time),Tmin is the minimum daily
recorded temperature,Tmax is the maximum daily recorded
temperature, andTmax−1 is the previous day’s maximum
recorded temperature (Smith, 2009). Because of the empiri-
cal nature of these equations, it should be noted that under
climate change, there is uncertainty as to how valid these
equations are for long-term forecasting.

For each elevation band within the study area, a daily time
series of minimum and maximum temperature data was de-
rived by taking the average of daily minimum and maximum
temperature values from each 1/8th degree grid cell from the
temporally downscaled BCSD CMIP3 dataset. By applying
the empirical formulations described in Eq. (1), a time series
of 6-hourly temperature values was derived for each eleva-
tion band within each catchment. A MAT file containing this
information for each elevation band within each catchment
for each of the 112 climate projections is used as input for
the NWS RFS.

2.3 Derivation of MAP input files

Similar to temperature data, the NWS RFS requires precip-
itation input at a 6-h timestep. Precipitation data was sepa-
rated by elevation band and catchment using a method iden-
tical to that used to separate 1/8th degree temperature data.
Unlike temperature data, the CBRFC currently uses observa-
tions of precipitation at the 6-hourly timestep and there are
no empirical formulations to translate daily precipitation val-
ues to a 6-hourly timestep.

Time series of precipitation at a 6-h timestep were derived
by first comparing the daily rainfall depth from the tempo-
rally disaggregated BCSD CMIP3 dataset to the 30-yr cali-
bration period (1976–2005) of aggregated daily observations
of precipitation used by the CBRFC. An analog precipitation
event occurring in the same month from the temporally dis-
aggregated BCSD CMIP3 dataset was then identified. The
daily precipitation value from the temporally disaggregated
BCSD CMIP3 dataset was then disaggregated to a 6-hourly
time step proportional to the analog event within the CBRFC
observed dataset. A MAP file containing this information for
each elevation band within each catchment for each of the
112 climate projections is used as input for the NWS RFS.

2.4 Derivation evapotranspiration demand rate of
change with respect to temperature

Evapotranspiration within the VIC model has been exten-
sively studied (e.g., Christensen and Lettenmaier, 2007;
Hamlet et al., 2007; Hurkmans et al., 2008, 2009; Lakshmi
and Wood, 1998; Nijssen et al., 1997). Of particular impor-
tance to this study Hamlet et al. (2007), indicated that evapo-
transpiration trends within VIC were driven by trends in pre-
cipitation and temperature; concurrent work indicated that

evapotranspiration significantly influenced projected stream-
flow response within the VIC model (Christensen and Let-
tenmaier, 2007). An advantage of the VIC model, and other
hydrologic models discussed, over the NWS RFS utilized by
the CBRFC is that these models allow for the user to ac-
count for evapotranspiration as a function of changing con-
ditions within the model. The rate of change of evapotranspi-
ration demand with respect to temperature over the Colorado
River Basin at 1/8th degree resolution was derived through
use of the VIC model. These average monthly rates of evapo-
transpiration demand change per degree temperature change
derived through the VIC model were used to derive pro-
jected evapotranspiration demand over the study area. The
VIC model computes evapotranspiration through use of the
Penman-Mont́eith equation to estimate evapotranspiration.

Evapotranspiration demand rates were derived by increas-
ing the minimum and maximum daily temperature within the
VIC model by 1◦C and computing the relative change in
evapotranspiration demand in the model. That is:

ETR =
(ET1−ET0)

ET0
(2)

where ETR is a ratio representing change in evapotranspira-
tion demand per degree Celsius. ET1 is the evapotranspira-
tion demand rate calculated within the VIC model after the
increase in temperature, and ETo is the original evapotran-
spiration demand prior to the change in temperature parame-
ters. Results were then averaged over a monthly timestep. It
is important to note that only the rate of change in evapotran-
spiration with respect to temperature is further utilized from
the VIC model in this study; the magnitude of evapotranspi-
ration demand as defined by the VIC model is only used in
this study to derive this rate of change.

2.5 Derivation of MAE Input Files

Daily evapotranspiration data was derived by first averaging
the rate of evapotranspiration change per 1 degree Celsius de-
rived through the use of the VIC model over each elevation
band within the study area for each month over the 30-yr cal-
ibration period. In addition, 12 base average temperatures
were derived for each month for each of the 112 climate sce-
narios over the 30-yr calibration (1976–2005) period.

Historical (1976–2005) evapotranspiration demand within
the NWS RFS model was used as a base evapotranspiration
value. For each month over the model run (1950–2099), an
average monthly temperature was derived. This monthly av-
erage temperature was then compared to the base tempera-
ture derived over the same month over the 30-yr calibration
period (1976–2005). The original evapotranspiration value
was then adjusted based on the difference between average
monthly temperature and the base monthly temperature:

ETt = ETorig+(Tt −Tbase)×ETR (3)

where ETt is the adjusted monthly evapotranspira-
tion demand at a given time, ETorig is the historical

www.hydrol-earth-syst-sci.net/15/2145/2011/ Hydrol. Earth Syst. Sci., 15, 2145–2164, 2011
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evapotranspiration demand,Tt is the average temperature
over any given month in the derived time series,Tbaseis the
30-yr calibration period average temperature for any given
month, andETR is the average ETR over each elevation
band as derived through use of the VIC model.

Daily evapotranspiration demand was assumed to be con-
stant and uniform over the course of any given month. A
MAE file containing this information for each elevation band
within each catchment for each of the 112 climate projections
is used as input for the NWS RFS.

2.6 Post-run bias correction

A ratio method was used to adjust streamflow projections
such that the long term mean over the CBRFC calibration
period (1976–2005) is equal to the long term mean de-
rived through the use of the temporally disaggregated BCSD
CMIP3 dataset over the same calibration period.

Average monthly streamflow projections over the 30-yr
calibration period (1976–2005) were derived using stream-
flow output from the calibrated NWS RFS forced with his-
torical precipitation and temperature data provided by the
CBRFC. Additionally, average monthly streamflow projec-
tions for each of the 112 climate scenarios over the 30-yr
calibration period were derived using data from the tempo-
rally disaggregated BCSD CMIP3 dataset. The ratio of these
two values was computed and applied to streamflow projec-
tions over the entire period of record (1950 through 2099)
derived using the temporally disaggregated BCSD CMIP3
dataset. This result ensures that the derived long-term (30-yr)
mean streamflow from 1976 through 2005 is equal between
the original dataset provided by the CBRFC and the BCSD
CMIP3 dataset.

2.7 Model performance

The NWS RFS model is calibrated to observed unregu-
lated streamflow spanning water year 1976 through water
year 2005; this calibration has been derived by the CBRFC
using observed precipitation and temperature records and
performs well. The correlation coefficient between observed
unregulated flow and modeled unregulated flow using the
calibrated model over the Gunnison River Basin was found to
be approximately 0.98 with a root mean square error (RMSE)
of approximately 47 MCM (0.038 MAF) (Fig. 3). For the
San Juan and Green River Basins, correlation coefficients
of 0.98 and 0.85 and RMSEs of 45 MCM (0.037 MAF) and
478 MCM (0.39 MAF), respectively.

Because calibration of the NWS RFS over these three Col-
orado River headwater basins was accomplished using obser-
vations of historical temperature and precipitation data, the
post-bias correction method described in the previous section
was employed to adjust for bias introduced through use of
the BCSD climate dataset. In doing so, the seasonal distribu-
tion and average magnitude of flow was preserved. Figure 4

Table 1. Statistics of streamflow projections pre- and post-bias cor-
rection. Values are presented in MCM.

Average of Average of
112 climate 112 climateCBRFC
projections projectionsStreamflow

(1976–2005) (1976–2005)Projection
pre-bias post-bias

Statistic

(1976–2005)
correction correction

Mean 2690 2230 2690
Average median 2670 2120 2530
Average standard deviation 1000 780 1050
Average variance 810 510 910
Average maximum 4850 4190 5410
Average minimum 860 1000 1130
Average skew 320 870 1010

illustrates the impacts of bias correction to the seasonal dis-
tribution of streamflow and improvement over the calibration
period over the Gunnison River Basin. Figure 5 describes the
impacts of bias correction to the spread of annual water year
observations over the calibration period over the Gunnison
River Basin. Bias correction impacts to monthly and annual
distributions of streamflow are similar over the San Juan and
Green River Basins. Calibration of the developed streamflow
traces is not done on an annual basis; nor is modeled data
calibrated to observed streamflow identically. As this study
is investigating long-term impacts to headwater basins due to
climate change, calibration efforts are focused on long-term
averages (Table 1).

3 Results of RFS model runs

3.1 Impact of evapotranspiration incorporation

Figure 6 illustrates the impact of taking into account climate
change impacts to evapotranspiration demand. Whereas the
10th and 90th percentiles over the 90 yr projection period are
approximately equal, the mean of the 112 climate projec-
tions is different. Over the 2010–2039 time period, adjusting
evapotranspiration in response to temperature change results
in a decrease of approximately 149 MCM (121 000 acre-feet
or approximately 6 %) to the mean annual runoff than pro-
jections of mean annual runoff made without an adjustment
to temperature. This difference increases over time, with a
decrease of approximately 258 MCM (209 000 acre-feet or
approximately 10 %) and approximately 329 MCM (267 000
acre-feet or approximately 13 %) over the 2040–2069 and
2070–2099 time periods, respectively.

Evapotranspiration demand and associated impacts to pro-
jections of streamflow over the Gunnison River Basin is spa-
tially distributed (Fig. 7). Adjusting evapotranspiration de-
mand with changing temperature impacts the Gunnison River
Basin across all catchments, particularly those in the south-
ern portion of the basin which is typically characterized by
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Fig. 3. The NWS RFS model is calibrated to observed unregulated streamflow spanning water years 1976–2005. Here, observed unregulated
streamflow over the Gunnison River Basin is compared to modeled unregulated streamflow derived using observations of precipitation and
temperature data.

Fig. 4. The solid black line describes average monthly streamflow from the calibrated NWS RFS model forced with observed precipitation
and temperature data over the calibration period (Water Year 1976 through Water Year 2005). The dashed red line describes average monthly
streamflow from the calibrated NWS RFS model forced with projections of future climate from the BCSD dataset and adjusted evapotranspi-
ration data; the surrounding red band describes the minimum and maximum monthly flows output by the model over the calibration period.
The dashed blue line, which overlays the solid black line, and surrounding band illustrates the impact of the post-bias correction procedure
to the data described in red.
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Fig. 5. The solid black line illustrates modeled water year streamflow over the Gunnison River Basin over the calibration period (1976–2005)
when the calibrated RFS is forced with observed temperature and precipitation data. The dashed red line describes the 10th, 50th, and 90th
percentiles of modeled streamflow using the 112 projections of future climate to force the RFS for any given water year over the calibration
period. The dashed blue line illustrates the impact of post-bias correction to those modeled projections of streamflow.

Fig. 6. Boxplots illustrating the impact of incorporating climate change impacts to evapotranspiration rates in the Gunnison River Basin.
Boxplots in this study define the outer whiskers at the 10 % and 90 % exceedance values and the bounds of the box at the 25 % and 75 %
exceedance values. The red boxplot illustrates results derived using data from the CBRFC over the calibration period. Green boxplots
illustrate results derived using the temporally downscaled BCSD dataset and adjusting evapotranspiration in response to temperature change.
Blue boxplots illustrate results derived using the temporally downscaled BCSD dataset without adjusting evapotranspiration in response to
temperature change.
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Table 2. Average streamflow projections from the Gunnison River
Basin. Projections are separated by SRES emissions scenarios and
future multi-decadal periods.

Average streamflow projection (MCM)
from the Gunnison River Basin

Time period All A2 B1 A1B
2010–2039 2550 2590 2580 2490
2040–2069 2360 2330 2370 2370
2070–2099 2260 2170 2340 2250

flatter topography and contributes less flow to the Gunnison
River tributary.

Streamflow projections are derived for each of the three
headwater basins with evapotranspiration adjusted for tem-
perature changes. Recent studies of climate change impacts
to streamflow over the Colorado River Basin typically indi-
cate decreasing flow within the basin between 10 % and 20 %
(e.g., Barnett and Pierce, 2009. Christensen and Lettenmaier,
2007. Hamlet et al., 2007. Hoerling and Eischeid, 2007).
When evapotranspiration demand is taken into consideration,
these results support those findings.

3.2 Streamflow projections

3.2.1 Gunnison River Basin

The Gunnison River Basin contributes approximately 16 %
of the Upper Colorado River Basin’s annual natural flow to
the Colorado River. Over the 30-yr calibration period, the av-
erage runoff from the Gunnison is approximately 2690 MCM
(2.18 MAF). Each of the 112 climate projections was used
to force the NWS RFS (Fig. 12). Over the model run pe-
riod (1950–2099), average streamflow from the Gunnison
River Basin is approximately 2530 MCM (2.05 MAF). Ta-
ble 2 summarizes the results of the streamflow projections
over the Gunnison River Basin. Reclamation operates the
Blue Mesa, Morrow Point, and Crystal Dams and Reser-
voirs, collectively known as the Aspinall Unit, as part of the
Colorado River Storage Project (CRSP) (US Department of
the Interior, Bureau of Reclamation, Upper Colorado Region
2009).

Reclamation manages the CRSP to meet downstream flow
requirements, hydroelectric power 8 needs, and provide for
endangered fish and their habitat, along with other approved
uses.

On average, streamflow over the Gunnison River Basin de-
creases over future multi-decadal periods. Of interest, one
climate projection results in a streamflow projection in ex-
cess of 14 800 MCM (12.0 MAF) in the year 2030. This
projection is made by the Canadian Centre for Climate Mod-
eling and Analysis GCM (Flato and Boer, 2001) under an
A1B emissions scenario, which, on average, is the more

moderate emissions scenario considered in this study. The
minimum annual flow projection is approximately 540 MCM
(0.44 MAF) in 2071. This minimum flow is a product of the
GCM from the Institut Pierre Simon in Laplace, France (O et
al., 2005); more intuitively, this projection falls under the A2
emissions scenario which describes, on average, a more ag-
gressive warming trend. Figure 9 separates streamflow pro-
jections over the Gunnison River Basin by emission scenar-
ios included in this study.

As shown in the right side of Fig. 7, the southern por-
tion of the Gunnison River Basin exhibits the greatest per-
cent reduction in projected streamflow from the calibration
period. This area encompasses the southern portion of the
Rocky Mountains. Previous work has shown that snowpack
in this area has declined with warming trends over the Col-
orado River Basin and contribute decreased streamflow in the
region (Mote et al., 2005; Mote, 2006).

3.2.2 Green River Basin

The Green River Basin contributes approximately 36 % of
the Upper Colorado River Basin’s annual natural flow to
the Colorado River. Reclamation manages two reservoirs,
Fontenelle and Flaming Gorge, to regulate flow along the
northern-most tributary to the Colorado River. Reclamation
operates the Flaming Gorge reservoir to meet downstream
water delivery and hydroelectric power needs. Like the As-
pinall Unit, Flaming Gorge operations allow for Reclamation
to protect and assist in the recovery of endangered fish within
the Colorado River Basin.

Over the 30-yr calibration period, the average runoff from
the Green River Basin is approximately 2380 MCM (1.93
MAF). Each of the 112 climate projections was used to force
the NWS CBRFC RFS (Fig. 8). Over the model run pe-
riod (1950–2099), average streamflow from the Green River
Basin is approximately 2370 MCM (1.92 MAF). On average,
streamflow over the Green Basin increases slightly over fu-
ture multi-decadal periods.

As shown in Fig. 11, much of the central portion of
Green River Basin exhibits slightly increased streamflow
when compared to the calibration period. This is somewhat
consistent with results noted by Mote (2006). Mote (2006)
describes increasing trends in SWE when using a regression
describing SWE in terms of precipitation and temperature.
The SNOW-17 model derives snowpack conditions in a sim-
ilar fashion (Anderson, 2006). Under these climate condi-
tions, increased model snowpack conditions would yield in-
creased runoff throughout the basin.

3.2.3 San Juan River Basin

Since 1992, Reclamation has been working in collabora-
tion with the San Juan River Basin Recovery Implementa-
tion Program to protect the Colorado pikeminnow and the
razorback sucker and their respective habitat (US Fish and
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Fig. 7. Impact of adjusting evapotranspiration with changes in temperature at the catchment scale over the Gunnison River Basin. Panels on
the left reflect average model output when evapotranspiration is not adjusted with temperature over the 2010–2039 time period (top left), the
2040–2069 time period (middle left), and the 2070–2099 time period (bottom left). Panels on the right reflect average model output when
evapotranspiration is adjusted with temperature over the 2010-2039 time period (top right), the 2040–2069 time period (middle right), and
the 2070–2099 time period (bottom right).

Wildlife Service, 2006). Reclamation operates the Vallecito
and Navajo reservoirs within the San Juan River Basin to
manage approximately 14 % of the annual runoff to the Col-
orado River. Reservoirs within the San Juan River Basin are
also part of the CRSP.

Over the 30-yr calibration period, the average runoff from
the San Juan River Basin is approximately 2230 MCM (1.81
MAF). Each of the 112 climate projections was used to force
the NWS CBRFC RFS. Over the model run period (1950–
2099), average streamflow from the San Juan River Basin is
approximately 2060 MCM (1.67 MAF) (Fig. 12).

On average, streamflow over the San Juan River Basin de-
creases over future multi-decadal periods. Of interest, one
climate projection results in a streamflow projection in ex-
cess of 11 100 MCM (9.00 MAF) in the year 2030. Like the
Gunnison River Basin, this projection is made by the Cana-

dian Centre for Climate Modeling and Analysis GCM (Flato
and Boer, 2001) under an A1B emissions scenario. The
minimum annual flow projection is approximately 123 MCM
(0.10 MAF) in 2091. This minimum flow is also a product of
the GCM from the Institut Pierre Simon in Laplace, France
(O et al., 2005) under the A2 emissions scenario.

As shown in Fig. 13, the vast majority of the San Juan
River Basin exhibits reduced streamflow when compared to
the calibration period. Reduced streamflow in the region re-
sults in less flexibility in the management of Reclamation’s
reservoir system. With reduced flows, it is more difficult for
Reclamation to manage reservoir releases to protect endan-
gered fish in the area, particularly as it relates to the regula-
tion of river temperatures and the protection of habitat area.
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Fig. 8. Annual water year streamflow projections from each of the 112 climate projections over the Gunnison River Basin with(a) evapo-
transpiration changes with temperature considered and(b) static evapotranspiration rates considered. Results from the CBRFC’s calibrated
model are included as well as long-term averages. The blue lines in bold indicate the Maximum and Minimum Probable flows, defined by
the CBRFC as the 10 % exceedance and 90 % exceedance values, respectively.

4 Stationarity in projected streamflow forecasts

The definition of stationarity, particularly with regards to cli-
mate change, is often under debate (e.g., Matter et al., 2010;
Milly et al., 2008; Raff et al., 2009; Villarini et al., 2009;
Wilby et al., 1999). The Kolmogorov-Smirnov Test (KS-
Test) is a nonparametric test for determining if the distribu-
tions of two samples are the same. The KS-Test compares
empirical distributions of two sample sets of data and deter-
mining the maximum distance between the two sets of data
(DeGroot, 1975; Georgakakos, 2003). This maximum dis-

tance is a value from which the hypothesis that the under-
lying distribution is the same for both samples may be re-
jected if the value of the maximum distance exceeds a crit-
ical value defined by the size of the samples. The KS-Test
has been used to compare ensemble streamflow projections
between lumped and distributed hydrologic models (Carpen-
ter and Georgakakos, 2006) as well as detecting changes in
the probability distributions associated with precipitation and
streamflow events (Wang et al., 2008). In this study, the
KS-Test is utilized to compare probability distributions of
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Fig. 9. Streamflow projections over the Gunnison River Basin separated by emissions scenarios and by climatology used by the CBRFC.

multi-decadal streamflow projections. Significantly differ-
ent probability distributions are indicative of non-stationary
behavior.

4.1 Gunnison River Basin results

Summary statistics for streamflow projections over the Gun-
nison River Basin are presented in Table 3. While there is
an appreciable change in summary statistics between multi-
decadal periods, these changes may be attributed to natural
hydroclimatic variability within the Colorado River Basin as
evidenced by tree-ring reconstructions over the region (e.g.,
Meko et al., 2007; Woodhouse and Lukas, 2006; Woodhouse
et al., 2006). The cumulative distribution functions (CDF)
of streamflow, regardless of emission scenario, tend to be
close, though separation is more apparent over the time pe-
riod spanning 2070–2099.

The KS-Test was first applied between streamflow projec-
tions derived by the CBRFC over the calibration period and
streamflow projections derived using climate data from the
112 temporally downscaled BCSD dataset over the same pe-
riod. As would be expected, the test statistic derived using
the KS-Test was less than the critical test statistic. Thus,
the null hypothesis that the data comes from the same dis-
tribution could not be rejected. When streamflow projections
derived from the 112 temporally downscaled BCSD dataset
were separated by emission scenario over the calibration pe-
riod, the result was the same.

The KS-Test was then applied between streamflow pro-
jections derived by the CBRFC over the calibration period
and streamflow projections derived using climate data from

the 112 temporally downscaled BCSD dataset over the en-
tire period from 2010 to 2099. In this case, the test statistic
derived using the KS-Test was greater than the critical test
statistic. Thus, the null hypothesis that the data comes from
the same distribution could be rejected and may be indicative
of nonstationary behavior.

The KS-Test was then applied between streamflow pro-
jections derived by the CBRFC over the calibration period
and streamflow projections derived using climate data from
the 112 temporally downscaled BCSD CMIP3 dataset over
the period from 2010 to 2099, separated by emissions sce-
nario and multi-decadal period. For each emissions scenario
and projected streamflow over the period spanning 2010 to
2039, the test statistic was less than the critical value and
the null hypothesis could not be rejected. However, for each
emissions scenario and projected streamflow over the period
spanning either 2040 to 2069 or 2070 to 2099, the null hy-
pothesis could be rejected. Table 4 summarizes results of the
KS-Tests performed over the Gunnison River Basin.

4.2 Green River Basin results

Unlike the Gunnison River Basin there is not an appreciable
change in summary statistics between multi-decadal periods
over the Green River Basin. There is less deviation from the
1976–2005 mean over each multi-decadal period than that
observed over the Gunnison River Basin.

KS-Test results were developed in an identical fashion to
those over the Gunnison River Basin. The results of each
KS-Test indicated that the null hypothesis could not be re-
jected; that is, each multi-decadal period did not come from
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Fig. 10. Annual water year streamflow projections from each of the 112 climate projections over the Green River Basin with(a) evapo-
transpiration changes with temperature considered and(b) static evapotranspiration rates considered. Results from the CBRFC’s calibrated
model are included as well as long-term averages. The blue lines in bold indicate the Maximum and Minimum Probable flows, defined by
the CBRFC as the 10 % exceedance and 90 % exceedance values, respectively.

a statistically different distribution. As a result, it is not pos-
sible to state that streamflow projections statistically exhibit
nonstationary behavior. The topography of the Green River
Basin is generally more mountainous and at higher eleva-
tions than those in the San Juan and Gunnison River Basins.
As warming temperature impacts are more prevalent at lower
elevations, projected climate over the Green River Basin may
exhibit more stationary characteristics since climate change
impacts are not as realized at higher elevations and latitudes
(e.g., Mote et al., 2005; Mote, 2006). Table 4 summarizes
the results of the KS-Tests over the Green River Basin.

4.3 San Juan River Basin results

Similar to the Gunnison River Basin, there is an appreciable
change in summary statistics between multi-decadal periods
over the San Juan River Basin. KS-Test results were devel-
oped in an identical fashion to those over the Gunnison and
Green River Basin. Results over the San Juan River Basin
were slightly different from those results derived over the
Gunnison and Green River Basins. For the period spanning
2010–2039, the A1B emissions scenario exhibits a test statis-
tic greater than the critical value such that the null hypothesis
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Fig. 11. Multi-decadal averages of streamflow projections over the Green River Basin.
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Fig. 12. Annual water year streamflow projections from each of the 112 climate projections over the San Juan River Basin with(a) evapo-
transpiration changes with temperature considered and(b) static evapotranspiration rates considered. Results from the CBRFC’s calibrated
model are included as well as long-term averages. The blue lines in bold indicate the Maximum and Minimum Probable flows, defined by
the CBRFC as the 10 % exceedance and 90 % exceedance values, respectively.

could be rejected. Like the Gunnison River Basin, all emis-
sions scenarios and projected streamflow spanning the period
over 2040 to 2099, the test statistic was greater than the crit-
ical value and the null hypothesis could be rejected. Other
KS-Test results were qualitatively identical with those ob-
served over the Gunnison River Basin. Overall, the topogra-
phy of the San Juan River Basin is at lower elevations than
those in the Green and Gunnison River Basins. As warming
temperature impacts are more prevalent at lower elevations,
projected climate over the San Juan River Basin may exhibit
nonstationary characteristics sooner than those projected in

the Green and Gunnison River Basins. Table 4 summarizes
results of the KS-Tests performed over the San Juan River
Basin.

5 Discussion

In this study, a methodology for incorporating BCSD CMIP3
climate data into a hydrologic streamflow forecasting model
was developed. This methodology utilized data from large
scale GCMs that had been bias corrected and spatially
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Fig. 13. Multi-decadal averages of streamflow projections over the San Juan River Basin.
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Table 3. Gunnison River Basin summary statistics.

Summary Statistics of Streamflow Projections Over the Gunnison River Basin (MCM)

1976–2005 2010–2039 2040–2069 2070–2099

Statistic A2 B1 A1B A2 B1 A1B A2 B1 A1B A2 B1 A1B
Min 670 750 780 750 790 580 600 750 630 530 650 620
1st Quartile 1920 1940 1940 1750 1750 1620 1490 1600 1540 1410 1550 1490
Median 2540 2570 2540 2360 2360 2260 2100 2130 2090 1900 2060 2020
Mean 2690 2690 2690 2590 2580 2480 2330 2370 2360 2170 2340 2250
3rd Quartile 3270 3280 3240 3160 3120 3020 2900 2840 2960 2660 2850 2730
Max 8260 6910 6770 8290 9080 15 630 8380 8880 8870 8990 8700 11 180

Table 4. The following table is a summary of results from the KS Test applied in this study. Shaded boxes indicate time periods and
emissions scenarios that were different from the calibration period (1976–2005) with statistical significance (greater than or equal to the
95 % confidence interval). Unshaded boxes indicate that no inference could be made with statistical significance.

Time Period/
Emissions Scenario Gunnison River Basin Green River Basin San Juan River Basin

A1B A2 B1 A1B A2 B1 A1B A2 B1

1976–2005

2010–2039

2040–2069

2070–2099

downscaled such that the data would be useful in regional hy-
drologic studies. This study also proposes and incorporates
a methodology to integrate impacts to evapotranspiration un-
der changing climate conditions, as there has been limited
research addressing this topic. This research further repre-
sents a methodology and progress towards the ability to in-
corporate climate change projections into Reclamation’s ex-
isting operations plans and river and reservoir management
studies. Although this research considers a river basin where
water resources are administered by a United States federal
agency (Reclamation), the methodology here is applicable
to any basin or watershed area, as well as any hydrologic
model and climate data sets. While this research investigated
changes to streamflow in response to projected changes in
climate, specifically with respect to temperature, precipita-
tion, and evapotranspiration demand, it is important to note
that these are not the sole parameters that may be investi-
gated when using a hydrologic model to project future wa-
ter supply. Recent research has investigated the role of land
cover and climatic change to basin hydrology (Cuo et al.,
2009). By accounting for multiple emissions scenarios from
multiple climate models, this study implicitly accounts for
additional impacts to hydroclimatic variables due to climate
change. Future research is necessary to assess the impacts

of specific hydroclimatic variables to regional and global hy-
drology.

Evapotranspiration demand under changing climate con-
ditions is not trivial in hydrologic modeling efforts or wa-
ter resource management studies. A major contribution of
this study is that by adjusting static evapotranspiration de-
mand with temperature within a lumped model, catchment
streamflow projections better reflect the potential impacts of
climate change. The CBRFC currently adjusts evapotranspi-
ration demand within the SAC-SMA model within the NWS
RFS to calibrate the model to observed streamflow in the
basin. This methodology highlights both the importance and
uncertainty regarding evapotranspiration in hydrologic mod-
eling studies. Evapotranspiration demand is a sensitive and
important parameter that must be accounted for; however,
due to limited observational data, it is often implicitly calcu-
lated through calibration efforts or as part of a mass balance
formulation. Under changing climate conditions, this uncer-
tainty increases. This study presents a progressive method-
ology through which changes to evapotranspiration demand
may be addressed when dealing with uncertainty associated
with climate change. Previous studies have presented pro-
gressive automated calibration schemes but do not address
evapotranspiration demand (e.g., Hogue et al., 2000, 2006;
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Sorooshian et al., 1993). Regardless, under changing climate
conditions, accurate estimates and measurements of evapo-
transpiration will become increasingly important.

Previous efforts to project streamflow under changing cli-
mate conditions over the Colorado River Basin have yielded
a broad range of results. Many studies indicate that over
the next 30 to 60 yr (2040 through 2070) the Colorado River
Basin may experience decreased runoff on the order of 6 %
to 20 % (Christensen et al., 2004; Christensen and Letten-
maier, 2007; McCabe and Wolock, 2008; Milly et al., 2005);
these studies have utilized a variety of models (most notably
the VIC model), methodologies, and datasets. The results of
this study support previous research efforts indicating a de-
crease in flow from the Colorado River Basin, as evidenced
by decreased flow over the Gunnison and San Juan River
Basins. Recent research has indicated the potential for in-
creased flow and variability in the northern portion of Col-
orado River Basin and its surrounding area (e.g., Aziz et
al., 2010; Barnett et al., 2010). Here, projections of stream-
flow over the Green River Basin indicate the potential for in-
creased flow into the future, suggesting that drying may not
be uniform or present over the entire Colorado River Basin.
Spatial heterogeneity with respect to the magnitude and state
(i.e., wet or dry) of streamflow conditions over the Colorado
River Basin may present more complex challenges for wa-
ter resource managers as the impacts of climate change are
realized.

Future efforts may examine an improved methodology
from that presented in this study. In particular, detailed as-
sessment of the uncertainty associated with the projection
of future flows may better quantify future ranges of pro-
jected streamflows. Here, a ratio method was employed as a
post-bias correction term. This method has the advantage of
not confining projected streamflows to the previous range of
historical values which is important when investigating cli-
mate change impacts and nonstationary behavior; however,
advanced statistical methods may be employed to decrease
uncertainty and narrow the range associated with long-term
projections of streamflow.

Under the definition of stationarity presented in Milly et
al. (2008), lower latitude Colorado River Basin headwaters
(i.e., the Gunnison and San Juan River Basins) investigated
in this study will exhibit nonstationary characteristics with
changing climate conditions. This is important to water re-
source managers, particularly in Reclamation, where past ob-
servations of streamflow are assumed to be representative of
future conditions. Future study may investigate the presence
on nonstationarity at the seasonal scale to determine poten-
tial shifts in the timing and magnitude of streamflow runoff
under changing climate conditions.
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