36,069 research outputs found

    Dynamics of quantum spin chains and multi-fermion excitation continua

    Get PDF
    We use the Jordan-Wigner representation to study dynamic quantities for the spin-1/2 XX chain in a transverse magnetic field. We discuss in some detail the properties of the four-fermion excitation continuum which is probed by the dynamic trimer structure factor.Comment: Presented at the SCES '05 - The International Conference on Strongly Correlated Electron Systems (Vienna, July 26-30, 2005

    Improving LLR Tests of Gravitational Theory

    Full text link
    Accurate analysis of precision ranges to the Moon has provided several tests of gravitational theory including the Equivalence Principle, geodetic precession, parameterized post-Newtonian (PPN) parameters γ\gamma and β\beta, and the constancy of the gravitational constant {\it G}. Since the beginning of the experiment in 1969, the uncertainties of these tests have decreased considerably as data accuracies have improved and data time span has lengthened. We are exploring the modeling improvements necessary to proceed from cm to mm range accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) currently under development in New Mexico. This facility will be able to make a significant contribution to the solar system tests of fundamental and gravitational physics. In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity approaching 10−14^{-14}, yielding sensitivity for the SEP violation parameter η\eta of ∼3×10−5\sim 3\times 10^{-5}, v2/c2v^2/c^2 general relativistic effects would be tested to better than 0.1%, and measurements of the relative change in the gravitational constant, G˙/G\dot{G}/G, would be ∼0.1\sim0.1% the inverse age of the universe. Having this expected accuracy in mind, we discusses the current techniques, methods and existing physical models used to process the LLR data. We also identify the challenges for modeling and data analysis that the LLR community faces today in order to take full advantage of the new APOLLO ranging station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on Fundamental Physics in Space, April 14-16, 2003, Oxnard, C

    SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range

    Get PDF
    In this work, we develop coarse-grained (CG) force fields for water, where the effective CG intermolecular interactions between particles are estimated from an accurate description of the macroscopic experimental vapour-liquid equilibria data by means of a molecular-based equation of state. The statistical associating fluid theory for Mie (generalised Lennard-Jones) potentials of variable range (SAFT-VR Mie) is used to parameterise spherically symmetrical (isotropic) force fields for water. The resulting SAFT-γ CG models are based on the Mie (8-6) form with size and energy parameters that are temperature dependent; the latter dependence is a consequence of the angle averaging of the directional polar interactions present in water. At the simplest level of CG where a water molecule is represented as a single bead, it is well known that an isotropic potential cannot be used to accurately reproduce all of the thermodynamic properties of water simultaneously. In order to address this deficiency, we propose two CG potential models of water based on a faithful description of different target properties over a wide range of temperatures: our CGW1-vle model is parameterised to match the saturated-liquid density and vapour pressure; our other CGW1-ift model is parameterised to match the saturated-liquid density and vapour-liquid interfacial tension. A higher level of CG corresponding to two water molecules per CG bead is also considered: the corresponding CGW2-bio model is developed to reproduce the saturated-liquid density and vapour-liquid interfacial tension in the physiological temperature range, and is particularly suitable for the large-scale simulation of bio-molecular systems. A critical comparison of the phase equilibrium and transport properties of the proposed force fields is made with the more traditional atomistic models

    Factorization in hard diffraction

    Get PDF
    In this talk, I reviewed the role of factorization in diffraction hard scattering.Comment: Talk presented at the Ringberg Workshop on ``New Trends in HERA Physics 2001''. 10 pages, 6 postscript figures. Misprints correcte

    PACS photometer calibration block analysis

    Get PDF
    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5% (standard deviation) or about 8% peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2% (stdev) or 2% in the blue, 3% in the green and 5% in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.Comment: 15 pages, accepted for publication in Experimental Astronom

    Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling

    Full text link
    An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical symmetry consistently from collapse through explosion to nearly complete deleptonization of the forming neutron star. The evolution time of about 9 s is short because of nucleon-nucleon correlations in the neutrino opacities. After a brief phase of accretion-enhanced luminosities (~200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of electron antineutrinos and muon/tau antineutrinos very similar. We discuss consequences for the neutrino-driven wind as a nucleosynthesis site and for flavor oscillations of SN neutrinos.Comment: 4 pages, 4 eps figures; published as Physical Review Letters, vol. 104, Issue 25, id. 25110

    Ray-tracing in pseudo-complex General Relativity

    Full text link
    Motivated by possible observations of the black hole candidate in the center of our galaxy and the galaxy M87, ray-tracing methods are applied to both standard General Relativity (GR) and a recently proposed extension, the pseudo-complex General Relativity (pc-GR). The correction terms due to the investigated pc-GR model lead to slower orbital motions close to massive objects. Also the concept of an innermost stable circular orbit (ISCO) is modified for the pc-GR model, allowing particles to get closer to the central object for most values of the spin parameter aa than in GR. Thus, the accretion disk, surrounding a massive object, is brighter in pc-GR than in GR. Iron Kα\alpha emission line profiles are also calculated as those are good observables for regions of strong gravity. Differences between the two theories are pointed out.Comment: revised versio
    • …
    corecore