898 research outputs found

    Quantum Tutte Embeddings

    Full text link
    Using the framework of Tutte embeddings, we begin an exploration of \emph{quantum graph drawing}, which uses quantum computers to visualize graphs. The main contributions of this paper include formulating a model for quantum graph drawing, describing how to create a graph-drawing quantum circuit from a given graph, and showing how a Tutte embedding can be calculated as a quantum state in this circuit that can then be sampled to extract the embedding. To evaluate the complexity of our quantum Tutte embedding circuits, we compare them to theoretical bounds established in the classical computing setting derived from a well-known classical algorithm for solving the types of linear systems that arise from Tutte embeddings. We also present empirical results obtained from experimental quantum simulations.Comment: 19 pages, 6 figure

    Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis

    Get PDF
    Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (ap/ap) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores

    Separately contacted electron-hole double layer in a GaAs/AlxGa1−xAs heterostructure

    Get PDF
    We describe a method for creating closely spaced parallel two-dimensional electron and hole gases confined in 200 Å GaAs wells separated by a 200 Å wide AlxGa1−xAs barrier. Low-temperature ohmic contacts are made to both the electrons and holes, whose densities are individually adjustable between 10^(10)/cm^2 to greater than 10^(11)/cm^2

    cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803.

    Full text link

    Breakdown of the Two-Step Model in K-Shell Photoemission and Subsequent Decay Probed by the Molecular-Frame Photoelectron Angular Distributions of CO_2

    Get PDF
    We report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay

    Drag in paired electron-hole layers

    Get PDF
    We investigate transresistance effects in electron-hole double layer systems with an excitonic condensate. Our theory is based on the use of a minimum dissipation premise to fix the current carried by the condensate. We find that the drag resistance jumps discontinuously at the condensation temperature and diverges as the temperature approaches zero.Comment: 12 pages, 1 Figure, .eps file attache

    Adenomatoid tumour of the liver

    Get PDF
    An unusual primary adenomatoid tumour arising in the normal liver is described. Hepatectomy was performed, and the patient is alive and free of disease 1 year postsurgery. Grossly, the tumour showed a haemorrhagic cut surface with numerous microcystic structures. Histological examination revealed cystic or angiomatoid spaces of various sizes lined by cuboidal, low-columnar, or flattened epithelioid cells with vacuolated cytoplasm and round to oval nuclei. The epithelioid cells were entirely supported by proliferated capillaries and arteries together with collagenous stroma. Immunohistochemical studies showed that the epithelioid cells were strongly positive for a broad spectrum of cytokeratins (AE1/AE3, CAM5.2, epithelial membrane antigen and cytokeratin 7) and mesothelial markers (calretinin, Wilms’ tumour 1 and D2-40). These cells were negative for Hep par-1, carcinoembryonic antigen, neural cell adhesion molecule, CD34, CD31 and HMB45. Atypically, abundant capillaries were observed; however, the cystic proliferation of epithelioid cells with vacuoles and immunohistochemical profile of the epithelioid element were consistent with hepatic adenomatoid tumour

    Phenotypes of pain behavior in phospholipase C-related but catalytically inactive protein type 1 knockout mice

    Get PDF
    Phospholipase C-related inactive protein (PRIP) plays important roles in trafficking to the plasma membrane of GABAA receptor, which is involved in the dominant inhibitory neurotransmission in the spinal cord and plays an important role in nociceptive transmission. However, the role of PRIP in pain sensation remains unknown. In this study, we investigated the phenotypes of pain behaviors in PRIP type 1 knockout (PRIP-1 -/- ) mice. The mutant mice showed hyperalgesic responses in the second phase of the formalin test and the von Frey test as compared with those in wild-type mice. In situ hybridization studies of GABAA receptors revealed significantly decreased expression of γ2 subunit mRNA in the dorsal and ventral horns of the spinal cord in PRIP-1 -/- mice, but no difference in α1 subunit mRNA expression. β2 subunit mRNA expression was significantly higher in PRIP-1 -/- mice than in wild-type mice in all areas of the spinal cord. On the other hand, the slow decay time constant for the spontaneous inhibitory current was significantly increased by treatment with diazepam in wild-type mice, but not in PRIP-1 -/- mice. These results suggest that PRIP-1 -/- mice exhibit the changes of the function and subunits expression of GABAA receptor in the spinal cord, which may be responsible for abnormal pain sensation in these mice

    Photoelectron Angular Distributions for Two-photon Ionization of Helium by Ultrashort Extreme Ultraviolet Free Electron Laser Pulses

    Full text link
    Phase-shift differences and amplitude ratios of the outgoing ss and dd continuum wave packets generated by two-photon ionization of helium atoms are determined from the photoelectron angular distributions obtained using velocity map imaging. Helium atoms are ionized with ultrashort extreme-ultraviolet free-electron laser pulses with a photon energy of 20.3, 21.3, 23.0, and 24.3 eV, produced by the SPring-8 Compact SASE Source test accelerator. The measured values of the phase-shift differences are distinct from scattering phase-shift differences when the photon energy is tuned to an excited level or Rydberg manifold. The difference stems from the competition between resonant and non-resonant paths in two-photon ionization by ultrashort pulses. Since the competition can be controlled in principle by the pulse shape, the present results illustrate a new way to tailor the continuum wave packet.Comment: 5 pages, 1 table, 3 figure
    corecore