296 research outputs found
Photogenerated Carriers in SrTiO3 Probed by Mid-Infrared Absorption
Infrared absorption spectra of SrTiO have been measured under
above-band-gap photoexcitations to study the properties of photogenerated
carriers, which should play important roles in previously reported photoinduced
phenomena in SrTiO. A broad absorption band appears over the entire
mid-infrared region under photoexcitation. Detailed energy, temperature, and
excitation power dependences of the photoinduced absorption are reported. This
photo-induced absorption is attributed to the intragap excitations of the
photogenerated carriers. The data show the existence of a high density of
in-gap states for the photocarriers, which extends over a wide energy range
starting from the conduction and valence band edges.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development
Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascular development of Lrp2 KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. The Lrp2 KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in the Lrp2 KO. T hi s explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans with LRP2 mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis
Tuning of metal-insulator transition of two-dimensional electrons at parylene/SrTiO interface by electric field
Electrostatic carrier doping using a field-effect-transistor structure is an
intriguing approach to explore electronic phases by critical control of carrier
concentration. We demonstrate the reversible control of the insulator-metal
transition (IMT) in a two dimensional (2D) electron gas at the interface of
insulating SrTiO single crystals. Superconductivity was observed in a
limited number of devices doped far beyond the IMT, which may imply the
presence of 2D metal-superconductor transition. This realization of a
two-dimensional metallic state on the most widely-used perovskite oxide is the
best manifestation of the potential of oxide electronics
The sources of sea-level changes in the Mediterranean Sea since 1960
[eng] Past sea-level changes in the Mediterranean Sea are highly non-uniform and can deviate significantly from both the global average sea-level rise and changes in the nearby Atlantic. Understanding the causes of this spatial non-uniformity is crucial to the success of coastal adaptation strategies. This, however, remains a challenge owing to the lack of long sea-level records in the Mediterranean. Previous studies have addressed this challenge by reconstructing past sea levels through objective analysis of sea-level observations. Such reconstructions have enabled significant progress toward quantifying sea-level changes, however, they have difficulty capturing long-term changes and provide little insight into the causes of the changes. Here, we combine data from tide gauges and altimetry with sea-level fingerprints of contemporary land-mass changes using spatial Bayesian methods to estimate the sources of sea-level changes in the Mediterranean Sea since 1960. We find that, between 1960 and 1989, sea level in the Mediterranean fell at an average rate of −0.3 ± 0.5 mm yr−1, due to an increase in atmospheric pressure over the basin and opposing sterodynamic and land-mass contributions. After 1989, Mediterranean sea level started accelerating rapidly, driven by both sterodynamic changes and land-ice loss, reaching an average rate of 3.6 ± 0.3 mm yr−1 in the period 2000–2018. The rate of sea-level rise shows considerable spatial variation in the Mediterranean Sea, primarily reflecting changes in the large-scale circulation of the basin. Since 2000, sea level has been rising faster in the Adriatic, Aegean, and Levantine Seas than anywhere else in the Mediterranean Sea
Multi-decadal variability in seasonal mean sea level along the North Sea coast
Seasonal deviations from annual-mean sea level in the North Sea
region show a large low-frequency component with substantial variability at
decadal and multi-decadal timescales. In this study, we quantify
low-frequency variability in seasonal deviations from annual-mean sea level
and look for drivers of this variability. The amplitude, as well as the
temporal evolution of this multi-decadal variability shows substantial
variations over the North Sea region, and this spatial pattern is similar to
the well-known pattern of the influence of winds and pressure changes on sea
level at higher frequencies. The largest low-frequency signals are found in
the German Bight and along the Norwegian coast. We find that the variability
is much stronger in winter and autumn than in other seasons and that this
winter and autumn variability is predominantly driven by wind and sea-level
pressure anomalies which are related to large-scale atmospheric patterns. For
the spring and summer seasons, this atmospheric forcing explains a smaller
fraction of the observed variability.
Large-scale atmospheric patterns have been derived from a principal component
analysis of sea-level pressure. The first principal component of sea-level
pressure over the North Atlantic Ocean, which is linked to the North Atlantic
Oscillation (NAO), explains the largest fraction of winter-mean variability
for most stations, while for some stations, the variability consists of a
combination of multiple principal components.
The low-frequency variability in season-mean sea level can manifest itself as
trends in short records of seasonal sea level. For multiple stations around
the North Sea, running-mean 40-year trends for autumn and winter sea level
often exceed the long-term trends in annual mean sea level, while for spring
and summer, the seasonal trends have a similar order of magnitude as the
annual-mean trends. Removing the variability explained by atmospheric
variability vastly reduces the seasonal trends, especially in winter and
autumn.</p
Lattice dynamics effects on small polaron properties
This study details the conditions under which strong-coupling perturbation
theory can be applied to the molecular crystal model, a fundamental theoretical
tool for analysis of the polaron properties. I show that lattice dimensionality
and intermolecular forces play a key role in imposing constraints on the
applicability of the perturbative approach. The polaron effective mass has been
computed in different regimes ranging from the fully antiadiabatic to the fully
adiabatic. The polaron masses become essentially dimension independent for
sufficiently strong intermolecular coupling strengths and converge to much
lower values than those tradition-ally obtained in small-polaron theory. I find
evidence for a self-trapping transition in a moderately adiabatic regime at an
electron-phonon coupling value of .3. Our results point to a substantial
independence of the self-trapping event on dimensionality.Comment: 8 pages, 5 figure
Combined Global GNSS Velocity Field
A global combined GNSS velocity field with almost 13,400 sites has been derived by the International Association of Geodesy’s Joint Working Group 3.2. The combined field is aligned to the ITRF2020 and gathers global and regional velocity fields computed by nineteen groups using different approaches. In addition to the combined velocities and their uncertainties, the combination also provides the alignment of each velocity field to the ITRF2020, the scaling of their velocity uncertainty and the estimated repeatability of the velocity estimates across the different groups at almost 3,000 sites. The median repeatability is at the level of 0.17 and 0.27 mm/yr for the horizontal and vertical velocities. Up to 11 % of the sites show poor velocity repeatability exceeding 3 times the median values
The sources of sea‐level changes in the Mediterranean Sea since 1960
Past sea-level changes in the Mediterranean Sea are highly non-uniform and can deviate significantly from both the global average sea-level rise and changes in the nearby Atlantic. Understanding the causes of this spatial non-uniformity is crucial to the success of coastal adaptation strategies. This, however, remains a challenge owing to the lack of long sea-level records in the Mediterranean. Previous studies have addressed this challenge by reconstructing past sea levels through objective analysis of sea-level observations. Such reconstructions have enabled significant progress toward quantifying sea-level changes, however, they have difficulty capturing long-term changes and provide little insight into the causes of the changes. Here, we combine data from tide gauges and altimetry with sea-level fingerprints of contemporary land-mass changes using spatial Bayesian methods to estimate the sources of sea-level changes in the Mediterranean Sea since 1960. We find that, between 1960 and 1989, sea level in the Mediterranean fell at an average rate of −0.3 ± 0.5 mm yr−1, due to an increase in atmospheric pressure over the basin and opposing sterodynamic and land-mass contributions. After 1989, Mediterranean sea level started accelerating rapidly, driven by both sterodynamic changes and land-ice loss, reaching an average rate of 3.6 ± 0.3 mm yr−1 in the period 2000–2018. The rate of sea-level rise shows considerable spatial variation in the Mediterranean Sea, primarily reflecting changes in the large-scale circulation of the basin. Since 2000, sea level has been rising faster in the Adriatic, Aegean, and Levantine Seas than anywhere else in the Mediterranean Sea
Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability
[eng] While there is evidence for an acceleration in global mean sea level (MSL) since the 1960s, its detection at local levels has been hampered by the considerable influence of natural variability on the rate of MSL change. Here we report a MSL acceleration in tide gauge records along the U.S. Southeast and Gulf coasts that has led to rates (>10 mm yr−1 since 2010) that are unprecedented in at least 120 years. We show that this acceleration is primarily induced by an ocean dynamic signal exceeding the externally forced response from historical climate model simulations. However, when the simulated forced response is removed from observations, the residuals are neither historically unprecedented nor inconsistent with internal variability in simulations. A large fraction of the residuals is consistent with wind driven Rossby waves in the tropical North Atlantic. This indicates that this ongoing acceleration represents the compounding effects of external forcing and internal climate variability
UV radiation enhanced oxygen vacancy formation caused by the PLD plasma plume
Pulsed Laser Deposition is a commonly used non-equilibrium physical deposition technique for the growth of complex oxide thin films. A wide range of parameters is known to influence the properties of the used samples and thin films, especially the oxygen-vacancy concentration. One parameter has up to this point been neglected due to the challenges of separating its influence from the influence of the impinging species during growth: the UV-radiation of the plasma plume. We here present experiments enabled by a specially designed holder to allow a separation of these two influences. The influence of the UV-irradiation during pulsed laser deposition on the formation of oxygen-vacancies is investigated for the perovskite model material SrTiO3. The carrier concentration of UV-irradiated samples is nearly constant with depth and time. By contrast samples not exposed to the radiation of the plume show a depth dependence and a decrease in concentration over time. We reveal an increase in Ti-vacancy–oxygen-vacancy-complexes for UV irradiated samples, consistent with the different carrier concentrations. We find a UV enhanced oxygen-vacancy incorporation rate as responsible mechanism. We provide a complete picture of another influence parameter to be considered during pulsed laser depositions and unravel the mechanism behind persistent-photo-conductivity in SrTiO3
- …
