13,510 research outputs found
Measurement-induced generation of spatial entanglement in a two-dimensional quantum walk with single-qubit coin
One of the proposals for the exploitation of two-dimensional quantum walks
has been the efficient generation of entanglement. Unfortunately, the
technological effort required for the experimental realization of standard
two-dimensional quantum walks is significantly demanding. In this respect, an
alternative scheme with less challenging conditions has been recently studied,
particularly in terms of spatial-entanglement generation [C. Di Franco, M. Mc
Gettrick, and Th. Busch, Phys. Rev. Lett. 106, 080502 (2011)]. Here, we extend
the investigation to a scenario where a measurement is performed on the coin
degree of freedom after the evolution, allowing a further comparison with the
standard two-dimensional Grover walk.Comment: 9 pages, 4 figures, RevTeX
Alternate two-dimensional quantum walk with a single-qubit coin
We have recently proposed a two-dimensional quantum walk where the
requirement of a higher dimensionality of the coin space is substituted with
the alternance of the directions in which the walker can move [C. Di Franco, M.
Mc Gettrick, and Th. Busch, Phys. Rev. Lett. {\bf 106}, 080502 (2011)]. For a
particular initial state of the coin, this walk is able to perfectly reproduce
the spatial probability distribution of the non-localized case of the Grover
walk. Here, we present a more detailed proof of this equivalence. We also
extend the analysis to other initial states, in order to provide a more
complete picture of our walk. We show that this scheme outperforms the Grover
walk in the generation of - spatial entanglement for any initial
condition, with the maximum entanglement obtained in the case of the particular
aforementioned state. Finally, the equivalence is generalized to wider classes
of quantum walks and a limit theorem for the alternate walk in this context is
presented.Comment: 9 pages, 9 figures, RevTeX
Framing the past: How virtual experience affects bodily description of artefacts
This study uses a novel, interdisciplinary approach to investigate how people describe ancient artefacts. Here, we focus on gestures. Researchers have shown that gestures are important in communication, and those researchers often make a distinction between beat and iconic gestures. Iconic gestures convey meaning, specifically, visual-spatial information. Beat gestures do not convey meaning; they facilitate lexical access. In our study, we videotaped participants while they described artefacts presented through varied media: visual examination, physical interaction, and three-dimensional virtual and material replica (i.e., 3D prints) interaction. Video analysis revealed that media type affected gesture production. Participants who viewed actual objects displayed in a museum-style case produced few gestures in their descriptions. This finding suggests that traditional museum displays may diminish or limit museum users degree of engagement with ancient artefacts. This interdisciplinary work advances our knowledge of material culture by providing new insights into how people use and experience ancient artefacts in varied presentations. Implications for virtual reproduction in research, education, and communication in archaeology are discussed.This paper is part of a larger study on how people perceive ancient artefacts, which was partially funded by the University of California Humanities Network and the Center for the Humanities at the University of California, Merced.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.culher.2015.04.00
Optimal path for a quantum teleportation protocol in entangled networks
Bellman's optimality principle has been of enormous importance in the
development of whole branches of applied mathematics, computer science, optimal
control theory, economics, decision making, and classical physics. Examples are
numerous: dynamic programming, Markov chains, stochastic dynamics, calculus of
variations, and the brachistochrone problem. Here we show that Bellman's
optimality principle is violated in a teleportation problem on a quantum
network. This implies that finding the optimal fidelity route for teleporting a
quantum state between two distant nodes on a quantum network with bi-partite
entanglement will be a tough problem and will require further investigation.Comment: 4 pages, 1 figure, RevTeX
Monodromy Properties of the Energy Momentum Tensor on General Algebraic Curves
A new approach to analyze the properties of the energy-momentum tensor
of conformal field theories on generic Riemann surfaces (RS) is proposed.
is decomposed into components with different monodromy properties,
where is the number of branches in the realization of RS as branch covering
over the complex sphere. This decomposition gives rise to new infinite
dimensional Lie algebra which can be viewed as a generalization of Virasoro
algebra containing information about the global properties of the underlying
RS. In the simplest case of hyperelliptic curves the structure of the algebra
is calculated in two ways and its central extension is explicitly given. The
algebra possess an interesting symmetry with a clear interpretation in the
framework of the radial quantization of CFT's with multivalued fields on the
complex sphere.Comment: 21 pages, plain TeX + harvma
High energy parton-parton amplitudes from lattice QCD and the stochastic vacuum model
Making use of the gluon gauge-invariant two-point correlation function,
recently determined by numerical simulation on the lattice in the quenched
approximation and the stochastic vacuum model, we calculate the elementary
(parton-parton) amplitudes in both impact-parameter and momentum transfer
spaces. The results are compared with those obtained from the Kr\"{a}mer and
Dosch ansatz for the correlators. Our main conclusion is that the divergences
in the correlations functions suggested by the lattice calculations do not
affect substantially the elementary amplitudes. Phenomenological and
semiempirical information presently available on elementary amplitudes is also
referred to and is critically discussed in connection with some theoretical
issues.Comment: Text with 11 pages in LaTeX (twocolumn form), 10 figures in
PostScript (psfig.tex used). Replaced with changes, Fig.1 modified, two
references added, some points clarified, various typos corrected. Version to
appear in Phys. Rev.
Generating Entangled Two-Photon States with Coincident Frequencies
It is shown that parametric downconversion, with a short-duration pump pulse
and a long nonlinear crystal that is appropriately phase matched, can produce a
frequency-entangled biphoton state whose individual photons are coincident in
frequency. Quantum interference experiments which distinguish this state from
the familiar time-coincident biphoton state are described.Comment: Revised version (a typo was corrected) as published on PR
State transfer in dissipative and dephasing environments
By diagonalization of a generalized superoperator for solving the master
equation, we investigated effects of dissipative and dephasing environments on
quantum state transfer, as well as entanglement distribution and creation in
spin networks. Our results revealed that under the condition of the same
decoherence rate , the detrimental effects of the dissipative
environment are more severe than that of the dephasing environment. Beside
this, the critical time at which the transfer fidelity and the
concurrence attain their maxima arrives at the asymptotic value
quickly as the spin chain length increases. The transfer
fidelity of an excitation at time is independent of when the system
subjects to dissipative environment, while it decreases as increases when
the system subjects to dephasing environment. The average fidelity displays
three different patterns corresponding to , and . For
each pattern, the average fidelity at time is independent of when the
system subjects to dissipative environment, and decreases as increases when
the system subjects to dephasing environment. The maximum concurrence also
decreases as increases, and when , it arrives at an
asymptotic value determined by the decoherence rate and the structure
of the spin network.Comment: 12 pages, 6 figure
Activation of Kv7 potassium channels inhibits intracellular Ca2+ increases triggered by TRPV1-mediated pain-inducing stimuli in F11 immortalized sensory neurons
Kv7.2-Kv7.5 channels mediate the M-current (IKM), a K+-selective current regulating neuronal excitability and representing an attractive target for pharmacological therapy against hyperexcitability diseases such as pain. Kv7 channels interact functionally with transient receptor potential vanilloid 1 (TRPV1) channels activated by endogenous and/or exogenous pain-inducing substances, such as bradykinin (BK) or capsaicin (CAP), respectively; however, whether Kv7 channels of specific molecular composition provide a dominant contribution in BK- or CAP-evoked responses is yet unknown. To this aim, Kv7 transcripts expression and function were assessed in F11 immortalized sensorial neurons, a cellular model widely used to assess nociceptive molecular mechanisms. In these cells, the effects of the pan-Kv7 activator retigabine were investigated, as well as the effects of ICA-27243 and (S)-1, two Kv7 activators acting preferentially on Kv7.2/Kv7.3 and Kv7.4/Kv7.5 channels, respectively, on BK- and CAP-induced changes in intracellular Ca2+ concentrations ([Ca2+]i). The results obtained revealed the expression of transcripts of all Kv7 genes, leading to an IKM-like current. Moreover, all tested Kv7 openers inhibited BK- and CAP-induced responses by a similar extent (~60%); at least for BK-induced Ca2+ responses, the potency of retigabine (IC50~1 µM) was higher than that of ICA-27243 (IC50~5 µM) and (S)-1 (IC50~7 µM). Altogether, these results suggest that IKM activation effectively counteracts the cellular processes triggered by TRPV1-mediated pain-inducing stimuli, and highlight a possible critical contribution of Kv7.4 subunits
Open String Wavefunctions in Warped Compactifications
We analyze the wavefunctions for open strings in warped compactifications,
and compute the warped Kahler potential for the light modes of a probe D-brane.
This analysis not only applies to the dynamics of D-branes in warped
backgrounds, but also allows to deduce warping corrections to the closed string
Kahler metrics via their couplings to open strings. We consider in particular
the spectrum of D7-branes in warped Calabi-Yau orientifolds, which provide a
string theory realizations of the Randall-Sundrum scenario. We find that
certain background fluxes, necessary in the presence of warping, couple to the
fermionic wavefunctions and qualitatively change their behavior. This modified
dependence of the wavefunctions are needed for consistency with supersymmetry,
though it is present in non-supersymmetric vacua as well. We discuss the
deviations of our setup from the RS scenario and, as an application of our
results, compute the warping corrections to Yukawa couplings in a simple model.
Our analysis is performed both with and without the presence of D-brane
world-volume flux, as well as for the case of backgrounds with varying dilaton.Comment: 52 pages, refs. added, minor correction
- …
