258 research outputs found
Why Our Next President May Keep His or her Senate Seat: A Conjecture on the Constitution’s Incompatibility Clause
Heart diseases are common and significant contributors to worldwide mortality and morbidity. During recent years complement mediated inflammation has been shown to be an important player in a variety of heart diseases. Despite some negative results from clinical trials using complement inhibitors, emerging evidence points to an association between the complement system and heart diseases. Thus, complement seems to be important in coronary heart disease as well as in heart failure, where several studies underscore the prognostic importance of complement activation. Furthermore, patients with atrial fibrillation often share risk factors both with coronary heart disease and heart failure, and there is some evidence implicating complement activation in atrial fibrillation. Moreover, Chagas heart disease, a protozoal infection, is an important cause of heart failure in Latin America, and the complement system is crucial for the protozoa-host interaction. Thus, complement activation appears to be involved in the pathophysiology of a diverse range of cardiac conditions. Determination of the exact role of complement in the various heart diseases will hopefully help to identify patients that might benefit from therapeutic complement intervention
The TNF Receptors p55 and p75 Mediate Chemotaxis of PMN Induced by TNFα and a TNFα 36–62 Peptide
The present study was performed to examine whether residues
36–62 of TNFα contain the chemotactic domain of
TNFα, and whether the p55 and p75 TNF receptors are involved
in TNFα induced chemotaxis. The chemotactic effect of
TNFα on PMN was inhibited by the mAbs Hrt-7b and Utr-1,
against the p55 and p75 TNF receptors, respectively. Both receptors may
therefore be required for mediating the chemotactic effect of TNFcz.
The synthetic TNFα 36–62, similar to TNFα, had
chemotactic effects on both PMN and monocytes. The chemotactic
activity of the TNFα 36–62 peptide on PMN, was inhibited
by Htr-7b, Utr-1 and soluble p55 receptor, which shows that the
peptide possessed the ability to induce chemotaxis through the TNF
receptors. In contrast to TNFα, the peptide did not show a
cytotoxic activity against WEHI 164 flbrosarcoma cells. It is
suggested that different domains of the TNFα molecule induce
distinct biological effects
Importance of extra- and intracellular domains of TLR1 and TLR2 in NFkappa B signaling
Recognition of ligands by toll-like receptor (TLR) 2 requires interactions with other TLRs. TLRs form a combinatorial repertoire to discriminate between the diverse microbial ligands. Diversity results from extracellular and intracellular interactions of different TLRs. This paper demonstrates that TLR1 and TLR2 are required for ara-lipoarabinomannan- and tripalmitoyl cysteinyl lipopeptide-stimulated cytokine secretion from mononuclear cells. Confocal microscopy revealed that TLR1 and TLR2 cotranslationally form heterodimeric complexes on the cell surface and in the cytosol. Simultaneous cross-linking of both receptors resulted in ligand-independent signal transduction. Using chimeric TLRs, we found that expression of the extracellular domains along with simultaneous expression of the intracellular domains of both TLRs was necessary to achieve functional signaling. The domains from each receptor did not need to be contained within a single contiguous protein. Chimeric TLR analysis further defined the toll/IL-1R domains as the area of crucial intracellular TLR1-TLR2 interaction
Membrane TNF confers protection to acute mycobacterial infection
BACKGROUND: Tumour necrosis factor (TNF) is crucial for the control of mycobacterial infection as TNF deficient (KO) die rapidly of uncontrolled infection with necrotic pneumonia. Here we investigated the role of membrane TNF for host resistance in knock-in mice with a non-cleavable and regulated allele (mem-TNF). METHODS: C57BL/6, TNF KO and mem-TNF mice were infected with M. tuberculosis H37Rv (Mtb at 100 CFU by intranasal administration) and the survival, bacterial load, lung pathology and immunological parameters were investigated. Bone marrow and lymphocytes transfers were used to test the role of membrane TNF to confer resistance to TNF KO mice. RESULTS: While TNF-KO mice succumbed to infection within 4–5 weeks, mem-TNF mice recruited normally T cells and macrophages, developed mature granuloma in the lung and controlled acute Mtb infection. However, during the chronic phase of infection mem-TNF mice succumbed to disseminated infection with necrotic pneumonia at about 150 days. Reconstitution of irradiated TNF-KO mice with mem-TNF derived bone marrow cells, but not with lymphocytes, conferred host resistance to Mtb infection in TNF-KO mice. CONCLUSION: Membrane expressed TNF is sufficient to allow cell-cell signalling and control of acute Mtb infection. Bone marrow cells, but not lymphocytes from mem-TNF mice confer resistance to infection in TNF-KO mice. Long-term infection control with chronic inflammation likely disrupting TNF mediated cell-cell signalling, additionally requires soluble TNF
Cross-Reactivity of Herpesvirus-Specific CD8 T Cell Lines Toward Allogeneic Class I MHC Molecules
Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495–503/A*0201, BMLF1259–267/A*0201, or BZLF154–64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-α production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-α production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection
Primary rat sertoli and interstitial cells exhibit a differential response to cadmium
Two cell types central to the support of spermatogenesis, the Sertoli cell and the interstitial (Leydig) cell, were isolated from the same cohort of young male rats and challenged with cadmium chloride to compare their susceptibility to the metal. Both cell types were cultured under similar conditions, and similar biochemical endpoints were chosen to minimize experimental variability. These endpoints include the uptake of 109 Cd, reduction of the vital tetrazolium dye MTT, incorporation of 3 H-leucine, change in heat-stable cadmium binding capacity, and production of lactate. Using these parameters, it was observed that the Sertoli cell cultures were adversely affected in a dose-and time-dependent manner, while the interstitial cell cultures, treated with identical concentrations of CdCl 2 , were less affected. The 72-hr LC 50 's for Sertoli cells and interstitial cells were 4.1 and 19.6 μM CdCl 2 , respectively. Thus, different cell populations within the same tissue may differ markedly in susceptibility to a toxicant. These in vitro data suggest that the Sertoli cell, in relation to the interstitium, is particularly sensitive to cadmium. Because the Sertoli cell provides functional support for the seminiferous epithelium, the differential sensitivity of this cell type may, in part, explain cadmium-induced testicular dysfunction, particularly at doses that leave the vascular epithelium intact.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42554/1/10565_2004_Article_BF00135027.pd
- …