87 research outputs found

    People who once had 40 cattle are left only with fences: Coping with persistent drought in Awash, Ethiopia

    Get PDF
    How to support those responding to environmental change in resource-constrained environments is central to literature on climate change adaption. Our research explores a gap in this literature relating to the negotiation of intra-household relations and resource access across different types of household in contexts of social and environmental transition. Using the example of the semi-arid Awash region in North-Eastern Ethiopia, which has experienced drought and alien plant invasion over the past decade, we explore how men and women use changes in household structures and relationships to adapt more effectively. We draw evidence from life histories with 35 pastoralists across three rural, peri-urban and urban communities. Using Dorward et al’s taxonomy, we find Afar people are not only ‘stepping up’, but also ‘stepping out’: shifting from pastoralism into agriculture and salaried employment. As this often involves splitting households across multiple locations, we look at how these reconfigured households support pastoralists’ wellbeing

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Oral floating extended release stavudine hydrophilic matrix tablets: formulation design and in vitro investigations

    No full text
    Stavudine (d4T) is a nucleoside analogue reverse transcriptase inhibitor commonly used as part of highly active antiretroviral therapy, which is administered twice a day. Formulation of extended-release (ER) d4T improves patient compliance and minimizes dose related side effects. This study, therefore, aims at formulating once-a-day floating d4T ER hydrophilic matrix tablets using hydroxypropyl methylcellulose (HPMC) as a release-modifying polymer. NaHCO3 and microcrystalline cellulose (MCC), grade Avicel® PH 101, were used as floating aid and release modifier, respectively. The effects of the levels of NaHCO3 (5 -10%), MCC (25 - 40%) and compression force (CF) (10 - 20 KN) on floating lag time, friability (Fr), release, and other tablet characteristics were assessed. The release kinetics was determined by fitting the data into different models. Floating lag-time, Fr and d4T release were optimized using a 2-level 3-factor full factorial experimental design and the optimum regions obtained were validated and therapeutic levels of d4T release were obtained for a period of 24 h from all formulations. The results indicated that CF has considerable impact on floating lag time. The floating lag-time of the tablets, at a CF of 10 KN and concentrations of MCC and NaHCO3 indicated above, was below 25 min. However, when the CF was raised to 20 KN, the minimum lag time was 75 min. The effect of NaHCO3 on floating lag time was dependent on the level of MCC, suggesting that its level should be increased with MCC level. For acceptable Fr, MCC should be increased at a lower level of NaHCO3. CF significantly decreased Fr. Thus, Fr and floating lag time are absolutely competitive responses. Therefore, an optimum region for these responses was obtained. As evidenced by the similarity factor, the release rate was not significantly affected by the levels of NaHCO3, MCC or CF. Nonetheless, optimum region for the desired drug release was obtained which followed first order at 25% MCC level, and Korsemeyer-Peppas model at 40%. Validation of the optimum formulation confirmed the results obtained. Thus, the in vitro results showed that the d4T regimen could be reduced from twice a day to once a day. . Ethiopian Pharmaceutical Journal Vol. 25 (1) 2007: pp. 51-6
    corecore