64 research outputs found
Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Identification of Mycobacteria in Routine Clinical Practice
Background: Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed. Methodology: We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 10 5 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25M. avium and 12 non-tuberculosis clinical isolates with identification scores $2 within 2.5 hours. Conclusions: Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heatinactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories i
Radical genome remodelling accompanied the emergence of a novel host-restricted bacterial pathogen
The emergence of new pathogens is a major threat to public and veterinary health. Changes in bacterial habitat such as a switch in host or disease tropism are typically accompanied by genetic diversification. Staphylococcus aureus is a multi-host bacterial species associated with human and livestock infections. A microaerophilic subspecies, Staphylococcus aureus subsp. anaerobius, is responsible for Morel’s disease, a lymphadenitis restricted to sheep and goats. However, the evolutionary history of S. aureus subsp. anaerobius and its relatedness to S. aureus are unknown. Population genomic analyses of clinical S. aureus subsp. anaerobius isolates revealed a highly conserved clone that descended from a S. aureus progenitor about 1000 years ago before differentiating into distinct lineages that contain African and European isolates. S. aureus subsp. anaerobius has undergone limited clonal expansion, with a restricted population size, and an evolutionary rate 10-fold slower than S. aureus. The transition to its current restricted ecological niche involved acquisition of a pathogenicity island encoding a ruminant host-specific effector of abscess formation, large chromosomal re-arrangements, and the accumulation of at least 205 pseudogenes, resulting in a highly fastidious metabolism. Importantly, expansion of ~87 insertion sequences (IS) located largely in intergenic regions provided distinct mechanisms for the control of expression of flanking genes, including a novel mechanism associated with IS-mediated anti-anti-sense decoupling of ancestral gene repression. Our findings reveal the remarkable evolutionary trajectory of a host-restricted bacterial pathogen that resulted from extensive remodelling of the S. aureus genome through an array of diverse mechanisms in parallel
Diversity of Staphylococcus aureus Isolates in European Wildlife
Staphylococcus aureus is a well-known colonizer and cause of infection among
animals and it has been described from numerous domestic and wild animal
species. The aim of the present study was to investigate the molecular
epidemiology of S. aureus in a convenience sample of European wildlife and to
review what previously has been observed in the subject field. 124 S. aureus
isolates were collected from wildlife in Germany, Austria and Sweden; they
were characterized by DNA microarray hybridization and, for isolates with
novel hybridization patterns, by multilocus sequence typing (MLST). The
isolates were assigned to 29 clonal complexes and singleton sequence types
(CC1, CC5, CC6, CC7, CC8, CC9, CC12, CC15, CC22, CC25, CC30, CC49, CC59, CC88,
CC97, CC130, CC133, CC398, ST425, CC599, CC692, CC707, ST890, CC1956, ST2425,
CC2671, ST2691, CC2767 and ST2963), some of which (ST2425, ST2691, ST2963)
were not described previously. Resistance rates in wildlife strains were
rather low and mecA-MRSA isolates were rare (n = 6). mecC-MRSA (n = 8) were
identified from a fox, a fallow deer, hares and hedgehogs. The common cattle-
associated lineages CC479 and CC705 were not detected in wildlife in the
present study while, in contrast, a third common cattle lineage, CC97, was
found to be common among cervids. No Staphylococcus argenteus or
Staphylococcus schweitzeri-like isolates were found. Systematic studies are
required to monitor the possible transmission of human- and livestock-
associated S. aureus/MRSA to wildlife and vice versa as well as the possible
transmission, by unprotected contact to animals. The prevalence of S.
aureus/MRSA in wildlife as well as its population structures in different
wildlife host species warrants further investigation
Modeling of air pollutant concentrations in an industrial region of Turkey
The hourly SO2 and PM10 concentrations in ambient air of the Kutahya city located at the western part of Turkey have exceeded the air quality limits in winter months since several years. The region has major industrial plants including lignite-fired power plants and open-cast mining activities, residential areas, and traffic sources. To obtain and quantify the sector-wise anthropogenic emissions and spatial distribution of the major pollutants including SO2, NOx , PM10, and CO, a comprehensive emission inventory with 1-km spatial resolution was prepared for the year of 2014, and the AERMOD dispersion model was used to predict ambient air concentrations in a domain of 140 km by 110 km. Validation of the model results was also done referring to in situ routine measurements at two monitoring stations located in the study area. Total emissions of SO2, PM10, NOx , and CO in the study area were calculated as 64,399, 9770, 24,627, and 29,198 tons/year, respectively. The results showed that industrial plants were the largest sources of SO2, NOx , and PM10 emissions, while residential heating and road traffic were the most contributing sectors for CO emissions. Three major power plants in the region with total annual lignite consumption of 10 million tons per year were main sources of high SO2 concentrations, while high PM10 concentrations mainly originated from two major open-cast lignite mines. Major contributors of high NOx and CO concentrations were traffic including highways and urban streets, and residential heating with high lignite consumption in urban areas. Results of the dispersion model run with the emission inventory resulted in partially high index of agreement (0.75) with SO2 measured in the urban station within the modeled area
- …