3,640 research outputs found

    Quantum loops in the Resonance Chiral Theory: improving the vector form factor

    Get PDF
    Quantum loops in the Resonance Chiral Theory are needed to improve the implementation of non-perturbative QCD. Furthermore, the one-loop computations can predict chiral low-energy couplings at next-to-leading order, a very appealing task. We present a first calculation of the vector form factor of the pion at subleading order in the 1/N_C expansion. From the analysis of the result at large energies we justify the requirement of considering short-distance constraints from form factors with resonances in the final state. The long-distance limit of our results allows to get a next-to-leading order estimate of \ell_6.Comment: Talk given at the International Workshop e+e- Collisions from phi to J/psi, 27th February-2nd March (2006), Novosibirsk (Russia

    One-loop Renormalization of Resonance Chiral Theory with Scalar and Pseudoscalar Resonances

    Full text link
    The divergent part of the generating functional of the Resonance Chiral Theory is evaluated up to one loop when one multiplet of scalar an pseudoscalar resonances are included and interaction terms which couple up to two resonances are considered. Hence we obtain the renormalization of the couplings of the initial Lagrangian and, moreover, the complete list of operators that make this theory finite, at this order.Comment: 4 pages, no figures. Talk given at the High-Energy Physics International Conference on Quantum Chromodynamics, 2-9 July (2005), Montpellier (France). To appear in the Proceeding

    Enhanced Utilization of structural Damping of rotating Machines using impulsively shaped torsional Moments

    Get PDF
    The reduction of torsional vibrations of rotating machines is an important issue, as they may lead to a decrease of the performance, or in the worst case, to a damage of the machinery. In particular, self-excited vibrations have to be suppressed in any case due to their hazardous nature. In this contribution, a method is proposed, which allows utilizing the structural damping inherent to every rotating machine much more effectively by introducing impulsively shaped torsional moments, resulting in repeated modal transfers of vibration energy. Depending on the chosen impulsive strength, the energy transfers are accompanied by feeding external energy to, or extracting energy from the mechanical system. It is shown theoretically by approximating the impulses by Dirac-delta functions that an impulsive strength exists, where no energy crosses the system boundary, i.e. energy extracted from one mode is fed entirely to another mode of vibration. In the case of a conservative system, a repeated application of such impulses induces a periodic exchange of energy between lower and higher modes. Taking into account the structural damping reveals the advantages of transferring energy across modes. As higher modes possess higher damping ratios than lower ones, the structural damping of the rotating machine can be utilized much more effectively, which leads to a significant reduction of torsional vibrations. The underlying equations of motion of the impulsively excited system can be written as recursive difference equations with constant coefficients. Hence, the stability properties of the system can be investigated according to the Floquet theory. It is shown that the proposed concept is capable of suppressing self-excited vibrations. Stability charts are presented which allow to identify stable areas of operation. Finally, some numerical results of a test-rig are shown, underlining the effectivity of the proposed method

    Renormalizable Sectors in Resonance Chiral Theory: S -> pi pi Decay Amplitude

    Get PDF
    We develop a resonance chiral theory without any a priori limitation on the number of derivatives in the hadronic operators. Through an exhaustive analysis of the resonance lagrangian and by means of field redefinitions, we find that the number of independent operator contributing to the S -> pi pi decay amplitude is finite: there is only one single-trace operator (the cd term) and three multi-trace terms. The deep implication of this fact is that the ultraviolet divergences that appear in this amplitude at the loop level can only appear through these chiral invariant structures. Hence, a renormalization of these couplings renders the amplitude finite.Comment: 4 page

    Long distance contribution to K+π+ννˉK^+ \to \pi^+ \nu {\bar \nu} decay and O(p4)O(p^4) terms in CHPT

    Full text link
    The long distance contribution to K+π+ννˉK^+ \to \pi^+ \nu {\bar \nu} is calculated using chiral perturbation theory. The leading contribution comes from O(p4)O(p^4) tree terms. The branching ratio of the O(p4)O(p^4) long distance contribution is found to be of order 10310_{-3} smaller than the short distance contributions.Comment: 12 pages, 1 figure (available upon request

    Role of Scalar Meson Resonances in $K_{L}^{0} \rightarrow \pi^{0} \gamma \gamma Decay

    Full text link
    Corrections to KL0π0γγK_{L}^{0}\rightarrow \pi^{0} \gamma \gamma decay induced by scalar meson exchange are studied within chiral perturbation theory. In spite of bad knowledge of scalar-mesons parameters, the calculated branching ratio can be changed by a few percent.Comment: 18 pages of text, 2 figures (available upon request); preprint IJS-TP-16-94 , TUM-T31-63-94

    Improving the Hadronization of QCD currents in TAUOLA and PHOKHARA

    Get PDF
    We present our study of the hadronization structure of both vector and axial-vector currents leading to decays of the tau into two kaons and a pion. The cornerstones of our framework are the large-N_C limit of QCD, the chiral structure exhibited at low energies and the proper asymptotic behaviour, ruled by QCD, that is demanded to the associated form factors. The couplings of the theory are mostly constrained by this procedure and upon the analysis of BaBar data on e^+e^- -> KK pi we are able to predict the hadronic spectra.Comment: 4 pages, 1 figure. To appear in the Proceedings of QCD 08: 14th International QCD Conference, 7-12th July 2008 Montpellier (France). To be published by Elsevier in Nuclear Physics B (Proceedings Supplement

    One loop corrections to quantum hadrodynamics with vector mesons

    Get PDF
    The renormalized elastic ππ\pi\pi scattering amplitude to one loop is calculated in the chiral limit in the σ\sigma model and in a Quantum Hadrodynamic model (QHD-III) with vector mesons. It is argued that QHD-III reduces to the linear σ\sigma model in the limit that the vector meson masses become large. The pion decay constant is also calculated to 1-loop in the σ\sigma model, and at tree level in QHD-III; it is shown that the coefficient of the tree level term in the scattering amplitude equals Fπ2F_\pi^{-2}. The 1-loop correction of FπF_\pi in QHD-III violates strong isospin current conservation. Thus,it is concluded that QHD-III can, at best, only describe the strongly interacting nuclear sector.Comment: 6 page

    Navigation-Assisted Posterior Open Reduction and Internal Fixation in a C-CLAMP Fashion for an Isolated C1 Fracture.

    Get PDF
    C1 fractures with an intact transverse ligament are usually treated conservatively. Patients who present with a progressive diastasis of bone fragments and a progressive articular subluxation mainly attributed to progressive lengthening of the transverse ligament (TAL) fibers can be treated with a C1 "C-clamp" fusion. A 75-year-old male who sustained a motor vehicle accident was neurologically intact. A computed tomography (CT) imaging demonstrated a Jefferson's type-C1 fracture with a slight lateral displacement of the C1 left lateral mass (LM) and a rotatory subluxation on the right. MRI showed an intact TAL and demonstrated an isolated rupture of the left alar ligament. Conservative treatment was chosen. Radiographic follow-up showed, at 3 months, progressive lateral mass displacement, most likely due to elongation of the TAL fibers; this was also associated with a persistent mechanical neck pain. For this reason, we performed a posterior reduction and internal fixation in a C-clamp fashion by placement of C1 lateral mass screws and posterior compression sparing the C1-2 joint. Using navigation, a 3.5-mm screw was inserted into the LM bilaterally. The screw heads were then connected with a rod and compression was applied before tightening. Postoperative CT scan demonstrated a satisfying reduction and further imaging will be made during the follow-up. The patient had a considerable relief of neck pain. Simple lateral mass fixation with C-clamp technique is a reasonable option in case of isolated C1 fractures in patients who have failed conservative management while preserving the range of motion (ROM) at the atlanto-axial joint. The link to the video can be found at: https://youtu.be/x8bsVwzCt_M

    On the Corrections to Dashen's Theorem

    Full text link
    The electromagnetic corrections to the masses of the pseudoscalar mesons π\pi and KK are considered. We calculate in chiral perturbation theory the contributions which arise from resonances within a photon loop at order O(e2mq)O(e^2 m_q). Within this approach we find rather moderate deviations to Dashen's theorem.Comment: 14 pages, sligthly enlarged version; a numerical error is corrected and the embedding of the figures is improved. The complete paper, including figures, is also available via anonymous ftp at ftp://www-ttp.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/; to be published in Phys.Rev.
    corecore