517 research outputs found
MP742: 4th Annual Munsungan Conference Proceedings: Forest Health
These conference proceedings provide viewpoints on a variety of important and defining aspects of forest health. Forest managers, landowners, and scientists have long appreciated the direct effects that insects, diseases and damaging weather can have on forests. Over the past fifty years the Maine landscape has been affected by numerous outbreaks of defoliators such as the gypsy moth and the spruce budworm, by white pine blister rust and beech bark disease, and most recently by severe ice storm damage, along with countless other pests and catastrophic storms. During the past several years, the public also has become increasingly aware of the subject of forest health and the factors that can result in the decline of forest health. Thus, our understanding of what forest health encompasses has grown well beyond the direct effects of insects and diseases to a more complete, ecological view. We now realize that the health of forests, measured by their ability to recover from stress, depends on factors of atmosphere, soils, water, and the status of associated plant and animal populations, as well as it does on healthy trees. Furthermore, all these aspects need to be in an appropriate balance if a healthy forest is to be maintained.https://digitalcommons.library.umaine.edu/aes_miscpubs/1025/thumbnail.jp
Massive gravity from descent equations
Both massless and massive gravity are derived from descent equations
(Wess-Zumino consistency conditions). The massive theory is a continuous
deformation of the massless one.Comment: 8 pages, no figur
Autoantibodies Against C3b—Functional Consequences and Disease Relevance
The complement component C3 is at the heart of the complement cascade. It is a complex protein, which generates different functional activated fragments (C3a, C3b, iC3b, C3c, C3d). C3b is a constituent of the alternative pathway C3 convertase (C3bBb), binds multiple regulators, and receptors, affecting thus the functioning of the immune system. The activated forms of C3 are a target for autoantibodies. This review focuses on the discovery, disease relevance, and functional consequences of the anti-C3b autoantibodies. They were discovered about 70 years ago and named immunoconglutinins. They were found after infections and considered convalescent factors. At the end of the twentieth century IgG against C3b were found in systemic lupus erythematosus and recently in lupus nephritis, correlating with the disease severity and flare. Cases of C3 glomerulopathy and immune complex glomerulonephritis were also reported. These antibodies recognize epitopes, shared between C3(H2O)/C3b/iC3b/C3c and have overt functional activity. They correlate with low plasmatic C3 levels in patients. In vitro, they increase the activity of the alternative pathway C3 convertase, without being C3 nephritic factors. They perturb the binding of the negative regulators Complement Receptor 1 and Factor H. The clear functional consequences and association with disease severity warrant further studies to establish the link between the anti-C3b autoantibodies and tissue injury. Comparative studies with such antibodies, found in patients with infections, may help to uncover their origin and epitopes specificity. Patients with complement overactivation due to presence of anti-C3b antibodies may benefit from therapeutic targeting of C3
The linear multiplet and ectoplasm
In the framework of the superconformal tensor calculus for 4D N=2
supergravity, locally supersymmetric actions are often constructed using the
linear multiplet. We provide a superform formulation for the linear multiplet
and derive the corresponding action functional using the ectoplasm method (also
known as the superform approach to the construction of supersymmetric
invariants). We propose a new locally supersymmetric action which makes use of
a deformed linear multiplet. The novel feature of this multiplet is that it
corresponds to the case of a gauged central charge using a one-form potential
not annihilated by the central charge (unlike the standard N=2 vector
multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear
vector-tensor multiplet. As a byproduct of our construction, we also find a
variant realization of the tensor multiplet in supergravity where one of the
auxiliaries is replaced by the field strength of a gauge three-form.Comment: 31 pages; v3: minor corrections and typos fixed, version to appear in
JHE
Indoor Calibration using Segment Chains
International audienceIn this paper, we present a new method for line segments matching for indoor reconstruction. Instead of matching individual seg- ments via a descriptor like most methods do, we match segment chains that have a distinctive topology using a dynamic programing formulation. Our method relies solely on the geometric layout of the segment chain and not on photometric or color profiles. Our tests showed that the presented method is robust and manages to produce calibration information even under a drastic change of viewpoint
On a class of embeddings of massive Yang-Mills theory
A power-counting renormalizable model into which massive Yang-Mills theory is
embedded is analyzed. The model is invariant under a nilpotent BRST
differential s. The physical observables of the embedding theory, defined by
the cohomology classes of s in the Faddeev-Popov neutral sector, are given by
local gauge-invariant quantities constructed only from the field strength and
its covariant derivatives.Comment: LATEX, 34 pages. One reference added. Version published in the
journa
The major autoantibody epitope on factor H in atypical hemolytic uremic syndrome is structurally different from its homologous site in factor H-related protein 1, supporting a novel model for induction of autoimmunity in this disease
Atypical hemolytic uremic syndrome (aHUS) is characterized by complement attack against host cells due to mutations in complement proteins or autoantibodies against complement factor H (CFH). It is unknown why nearly all patients with autoimmune aHUS lack CFHR1 (CFH-related protein-1). These patients have autoantibodies against CFH domains 19 and 20 (CFH19-20), which are nearly identical to CFHR1 domains 4 and 5 (CFHR14-5). Here, binding site mapping of autoantibodies from 17 patients using mutant CFH19-20 constructs revealed an autoantibody epitope cluster within a loop on domain 20, next to the two buried residues that are different in CFH19-20 and CFHR14-5. The crystal structure of CFHR14-5 revealed a difference in conformation of the autoantigenic loop in the C-terminal domains of CFH and CFHR1, explaining the variation in binding of autoantibodies from some aHUS patients to CFH19-20 and CFHR14-5. The autoantigenic loop on CFH seems to be generally flexible, as its conformation in previously published structures of CFH19-20 bound to the microbial protein OspE and a sialic acid glycan is somewhat altered. Cumulatively, our data suggest that association of CFHR1 deficiency with autoimmune aHUS could be due to the structural difference between CFHR1 and the autoantigenic CFH epitope, suggesting a novel explanation for CFHR1 deficiency in the pathogenesis of autoimmune aHUS
Superfield Theories in Tensorial Superspaces and the Dynamics of Higher Spin Fields
We present the superfield generalization of free higher spin equations in
tensorial superspaces and analyze tensorial supergravities with GL(n) and SL(n)
holonomy as a possible framework for the construction of a non-linear higher
spin field theory. Surprisingly enough, we find that the most general solution
of the supergravity constraints is given by a class of superconformally flat
and OSp(1|n)-related geometries. Because of the conformal symmetry of the
supergravity constraints and of the higher spin field equations such geometries
turn out to be trivial in the sense that they cannot generate a `minimal'
coupling of higher spin fields to their potentials even in curved backgrounds
with a non-zero cosmological constant. This suggests that the construction of
interacting higher spin theories in this framework might require an extension
of the tensorial superspace with additional coordinates such as twistor-like
spinor variables which are used to construct the OSp(1|2n) invariant
(`preonic') superparticle action in tensorial superspace.Comment: LaTeX, 30 pages, no figures. V2. Discussion on conventional
constraints extended, typos corrected, JHEP style, to appear in JHE
Pure spinor superfields -- an overview
Maximally supersymmetric theories do not allow off-shell superspace
formulations with traditional superfields containing a finite set of auxiliary
fields. It has become clear that off-shell supersymmetric action formulations
of such models can be achieved by the introduction of pure spinors. In this
talk, an overview of this formalism is given, with emphasis on D=10
super-Yang-Mills theory and D=11 supergravity. This a somewhat expanded version
of a talk presented at the workshop "Breaking of supersymmetry and ultraviolet
divergences in extended supergravity" (BUDS), Laboratori Nazionali di Frascati,
March 25-28, 2013.Comment: 34 pp., 2 figs., contributions to the proceedings of the workshop
"Breaking of supersymmetry and ultraviolet divergences in extended
supergravity" (BUDS), Laboratori Nazionali di Frascati, March 25-28, 201
- …