316 research outputs found

    Petrogenetic aspects of Los Pedroches granodiorite (Central zone of Los Pedroches batholith, Córdoba, Spain)

    Get PDF
    [Resumen] Se ha realizado un estudio petrológico y geoquímico detallado de la granodiorita de Los Pedroches y de sus enclaves microgranitoides (sensu VERNON, 1983). Tanto en granodiorita como en enclaves se han obtenido datos de elementos mayores y trazas en roca total (incluidos REE) y datos de microsonda electrónica para las fases minerales mayoritarias. Se concluye que tanto las rocas estudiadas como sus enclaves pueden haber sido generados a partir de fundido(s) procedente(s) de un mismo protolito cortical, puesto que los datos geoquímicos de los enclaves no permiten inferir una hibridación de material cortical con cantidades significativas de material exótico. Se sugiere una explicación alternativa para la generación de los enclaves microgranitoides estudiados, que permite explicar tanto su naturaleza ígnea como la totalidad de sp::; rasgos geoquímicos[Abstract] A detailed petrologic and geochemical study of Los Pedroches granodiorite and its microgranitoid enclaves (sensu VERNON, 1983) has been performed. Wholerock major and trace elements (including REE) chemical data and electron microprobe mineral analysis of mayor phases have been obtained, both from granodiorites and microgranitoid enclaves. It is concluded that both studied rocks and their enclaves can have been generated from melt(s) derived from the same crustal protolith, since geochemical data from enclaves do not permit to deduce an hybridization of crustal melts with signifcants amounts of exotic material. An alternative explanation of studied microgranitoid enclaves, allowing to interprete both their igneous character and aH their observed geochemical features is suggested

    Topological Defects from First Order Gauge Theory Phase Transitions

    Get PDF
    We investigate the mechanism by which topological defects form in first order phase transitions with a charged order parameter. We show how thick superconductor vortices and heavy cosmic strings form by trapping of magnetic flux. In an external magnetic field, intermediate objects such as strips and membranes of magnetic flux and chains of single winding defects are produced. At non-zero temperature, a variety of spontaneous defects of different winding numbers arise. In cosmology, our results mean that the magnetic flux thermal fluctuations get trapped in a primordial multi-tension string network. The mechanism may also apply to the production of cosmic-like strings in brane collisions. In a thin type-I superconductor film, flux strips are found to be meta-stable while thick vortices are stable up to some critical value of the winding number which increases with the thickness of the film. In addition, a non-dissipative Josephson-like current is obtained across the strips of quantized magnetic flux.Comment: Corrections made on sections 4,5. Higher quality figures in published versio

    Herschel observations of the circumstellar environment of the two Herbig Be stars R Mon and PDS27

    Full text link
    We report and analyse FIR observations of two Herbig Be stars, R Mon and PDS 27, obtained with Herschel's instruments PACS and SPIRE. We construct SEDs and derive the infrared excess. We extract line fluxes from the PACS and SPIRE spectra and construct rotational diagrams in order to estimate the excitation temperature of the gas. We derive CO, [OI] and [CI] luminosities to determine physical conditions of the gas, as well as the dominant cooling mechanism. We confirm that the Herbig Be stars are surrounded by remnants from their parental clouds, with an IR excess that mainly originates in a disc. In R Mon we detect [OI], [CI], [CII], CO (26 transitions), water and OH, while in PDS 27 we only detect [CI] and CO (8 transitions). We attribute the absence of OH and water in PDS 27 to UV photo-dissociation and photo-evaporation. From the rotational diagrams, we find several components for CO: we derive TrotT_{rot} 949±\pm90 K, 358±\pm20 K & 77±\pm12 K for R Mon, 96±\pm12 K & 31±\pm4 K for PDS 27 and 25±\pm8 K & 27±\pm6 K for their respective compact neighbours. The forsterite feature at 69μ\mum was not detected in either of the sources, probably due to the lack of (warm) crystalline dust in a flat disc. We find that cooling by molecules is dominant in the Herbig Be stars, while this is not the case in Herbig Ae stars where cooling by [OI] dominates. Moreover, we show that in the Herbig Be star R Mon, outflow shocks are the dominant gas heating mechanism, while in Herbig Ae stars this is stellar. The outflow of R Mon contributes to the observed line emission by heating the gas, both in the central spaxel/beam covering the disc and the immediate surroundings, as well as in those spaxels/beams covering the parabolic shell around it. PDS 27, a B2 star, has dispersed a large part of its gas content and/or destroyed molecules; this is likely given its intense UV field.Comment: Accepted for publication in Astronomy & Astrophysic

    Fluxoid formation: size effects and non-equilibrium universality

    Full text link
    Simple causal arguments put forward by Kibble and Zurek suggest that the scaling behaviour of condensed matter at continuous transitions is related to the familiar universality classes of the systems at quasi-equilibrium. Although proposed 25 years ago or more, it is only in the last few years that it has been possible to devise experiments from which scaling exponents can be determined and in which this scenario can be tested. In previous work, an unusually high Kibble-Zurek scaling exponent was reported for spontaneous fluxoid production in a single isolated superconducting Nb loop, albeit with low density. Using analytic approximations backed up by Langevin simulations, we argue that densities as small as these are too low to be attributable to scaling, and are conditioned by the small size of the loop. We also reflect on the physical differences between slow quenches and small rings, and derive some criteria for these differences, noting that recent work on slow quenches does not adequately explain the anomalous behaviour seen here.Comment: 7 pages, 4 figures, presentation given at CMMP 201

    Defect formation in superconducting rings: external fields and finite-size effects

    Full text link
    Consistent with the predictions of Kibble and Zurek, scaling behaviour has been seen in the production of fluxoids during temperature quenches of superconducting rings. However, deviations from the canonical behaviour arise because of finite-size effects and stray external fields. Technical developments, including laser heating and the use of long Josephson tunnel junctions, have improved the quality of data that can be obtained. With new experiments in mind we perform large-scale 3D simulations of quenches of small, thin rings of various geometries with fully dynamical electromagnetic fields, at nonzero externally applied magnetic flux. We find that the outcomes are, in practice, indistinguishable from those of much simpler Gaussian analytical approximations in which the rings are treated as one-dimensional systems and the magnetic field fluctuation-free.Comment: 10 pages, 3 figures, presentation at QFS2012, to appear in JLT

    Multiwavelength characterisation of an ACT-selected, lensed dusty star-forming galaxy at z=2.64

    Get PDF
    We present \ci\,(2--1) and multi-transition 12^{12}CO observations of a dusty star-forming galaxy, ACT\,J2029+0120, which we spectroscopically confirm to lie at zz\,=\,2.64. We detect CO(3--2), CO(5--4), CO(7--6), CO(8--7), and \ci\,(2--1) at high significance, tentatively detect HCO+^{+}(4--3), and place strong upper limits on the integrated strength of dense gas tracers (HCN(4--3) and CS(7--6)). Multi-transition CO observations and dense gas tracers can provide valuable constraints on the molecular gas content and excitation conditions in high-redshift galaxies. We therefore use this unique data set to construct a CO spectral line energy distribution (SLED) of the source, which is most consistent with that of a ULIRG/Seyfert or QSO host object in the taxonomy of the \textit{Herschel} Comprehensive ULIRG Emission Survey. We employ RADEX models to fit the peak of the CO SLED, inferring a temperature of T\sim117 K and nH2105n_{\text{H}_2}\sim10^5 cm3^{-3}, most consistent with a ULIRG/QSO object and the presence of high density tracers. We also find that the velocity width of the \ci\ line is potentially larger than seen in all CO transitions for this object, and that the LCI(21)/LCO(32)L'_{\rm C\,I(2-1)}/L'_{\rm CO(3-2)} ratio is also larger than seen in other lensed and unlensed submillimeter galaxies and QSO hosts; if confirmed, this anomaly could be an effect of differential lensing of a shocked molecular outflow.Comment: Accepted for publication in Ap

    Spectral Stacking of Radio-Interferometric Data

    Full text link
    Mapping molecular line emission beyond the bright low-J CO transitions is still challenging in extragalactic studies, even with the latest generation of (sub-)mm interferometers, such as ALMA and NOEMA. We summarise and test a spectral stacking method that has been used in the literature to recover low-intensity molecular line emission, such as HCN(1-0), HCO+(1-0), and even fainter lines in external galaxies. The goal is to study the capabilities and limitations of the stacking technique when applied to imaged interferometric observations. The core idea of spectral stacking is to align spectra of the low S/N spectral lines to a known velocity field calculated from a higher S/N line expected to share the kinematics of the fainter line, e.g., CO(1-0) or 21-cm emission. Then these aligned spectra can be coherently averaged to produce potentially high S/N spectral stacks. Here, we use imaged simulated interferometric and total power observations at different signal-to-noise levels, based on real CO observations. For the combined interferometric and total power data, we find that the spectral stacking technique is capable of recovering the integrated intensities even at low S/N levels across most of the region where the high S/N prior is detected. However, when stacking interferometer-only data for low S/N emission, the stacks can miss up to 50% of the emission from the fainter line. A key result of this analysis is that the spectral stacking method is able to recover the true mean line intensities in low S/N cubes and to accurately measure the statistical significance of the recovered lines. To facilitate the application of this technique we provide a public Python package, called PyStacker.Comment: 10 pages, 10 figures, accepted for pub in A&A, Apr 28, 202

    Resolved low-J 12^{12}CO excitation at 190 parsec resolution across NGC 2903 and NGC 3627

    Full text link
    The low-JJ rotational transitions of 12^{12}CO are commonly used to trace the distribution of molecular gas in galaxies. Their ratios are sensitive to excitation and physical conditions in the molecular gas. Spatially resolved studies of CO ratios are still sparse and affected by flux calibration uncertainties, especially since most do not have high angular resolution or do not have short-spacing information and hence miss any diffuse emission. We compare the low-JJ CO ratios across the disk of two massive, star-forming spiral galaxies NGC2903 and NGC3627 to investigate whether and how local environments drive excitation variations at GMC scales. We use Atacama Large Millimeter Array (ALMA) observations of the three lowest-JJ CO transitions at a common angular resolution of 4'' (190pc). We measure median line ratios of R21=0.670.11+0.13R_{21}=0.67^{+0.13}_{-0.11}, R32=0.330.08+0.09R_{32}=0.33^{+0.09}_{-0.08}, and R31=0.240.09+0.10R_{31}=0.24^{+0.10}_{-0.09} across the full disk of NGC3627. We see clear CO line ratio variation across the galaxy consistent with changes in temperature and density of the molecular gas. In particular, toward the center, R21R_{21}, R32R_{32}, and R31R_{31} increase by 35\%, 50\%, and 66\%, respectively compared to their average disk values. The overall line ratio trends suggest that CO(3-2) is more sensitive to changes in the excitation conditions than the two lower-JJ transitions. Furthermore, we find a similar radial R32R_{32} trend in NGC2903, albite a larger disk-wide average of R32=0.470.08+0.14\langle R_{32}\rangle=0.47^{+0.14}_{-0.08}. We conclude that the CO low-JJ line ratios vary across environments in such a way that they can trace changes in the molecular gas conditions, with the main driver being changes in temperature.Comment: accepted for publication in MNRAS, 17 pages, 16 figure
    corecore