118 research outputs found
Co atoms on BiSe revealing a coverage dependent spin reorientation transition
We investigate Co nanostructures on BiSe by means of scanning
tunneling microscopy and spectroscopy [STM/STS], X-ray absorption spectroscopy
[XAS], X-ray magnetic dichroism [XMCD] and calculations using the density
functional theory [DFT]. In the single adatom regime we find two different
adsorption sites by STM. Our calculations reveal these to be the fcc and hcp
hollow sites of the substrate. STS shows a pronounced peak for only one species
of the Co adatoms indicating different electronic properties of both types.
These are explained on the basis of our DFT calculations by different
hybridizations with the substrate. Using XMCD we find a coverage dependent spin
reorientation transition from easy-plane toward out-of-plane. We suggest
clustering to be the predominant cause for this observation.Comment: 10 pages, 4 figure
Universality of quantum time dilation
Time dilation is a difference in measured time between two clocks that either
move with different velocities or experience different gravitational
potentials. Both of these effects stem from the theory of relativity and are
usually associated with classically defined trajectories, characterized by
position, momentum, and acceleration. However, when spatial degrees of freedom
are treated in a quantum way and a clock is allowed to be in a coherent
superposition of either two momenta or two heights, additional quantum
corrections to classical time dilation appear, called kinematic and
gravitational quantum time dilations, respectively. We show that similarly to
its classical counterpart, kinematic quantum time dilation is universal for any
clock mechanism, while gravitational quantum time dilation is not. We also show
that although both of these effects reduce to incoherent averaging of different
classical time dilation contributions, there exists an additional quantum time
dilation effect that has no classical analog and can be extracted from
higher-order corrections to the system's Hamiltonian
Strong out-of-plane magnetic anisotropy of Fe adatoms on BiTe
The electronic and magnetic properties of individual Fe atoms adsorbed on the
surface of the topological insulator BiTe(111) are investigated.
Scanning tunneling microscopy and spectroscopy prove the existence of two
distinct types of Fe species, while our first-principles calculations assign
them to Fe adatoms in the hcp and fcc hollow sites. The combination of x-ray
magnetic circular dichroism measurements and angular dependent magnetization
curves reveals out-of-plane anisotropies for both species with anisotropy
constants of meV/atom and meV/atom. These values are well in line with the results of
calculations.Comment: 6 pages, 3 figure
Quantum states made to measure
Recent progress in manipulating quantum states of light and matter brings
quantum-enhanced measurements closer to prospective applications. The current
challenge is to make quantum metrologic strategies robust against
imperfections.Comment: 4 pages, 3 figures, Commentary for Nature Photonic
Biological measurement beyond the quantum limit
Quantum noise places a fundamental limit on the per photon sensitivity
attainable in optical measurements. This limit is of particular importance in
biological measurements, where the optical power must be constrained to avoid
damage to the specimen. By using non-classically correlated light, we
demonstrated that the quantum limit can be surpassed in biological
measurements. Quantum enhanced microrheology was performed within yeast cells
by tracking naturally occurring lipid granules with sensitivity 2.4 dB beyond
the quantum noise limit. The viscoelastic properties of the cytoplasm could
thereby be determined with a 64% improved measurement rate. This demonstration
paves the way to apply quantum resources broadly in a biological context
Quantum sensing networks for the estimation of linear functions
The theoretical framework for networked quantum sensing has been developed to a great extent in the past few years, but there are still a number of open questions. Among these, a problem of great significance, both fundamentally and for constructing efficient sensing networks, is that of the role of inter-sensor correlations in the simultaneous estimation of multiple linear functions, where the latter are taken over a collection local parameters and can thus be seen as global properties. In this work we provide a solution to this when each node is a qubit and the state of the network is sensor-symmetric. First we derive a general expression linking the amount of inter-sensor correlations and the geometry of the vectors associated with the functions, such that the asymptotic error is optimal. Using this we show that if the vectors are clustered around two special subspaces, then the optimum is achieved when the correlation strength approaches its extreme values, while there is a monotonic transition between such extremes for any other geometry. Furthermore, we demonstrate that entanglement can be detrimental for estimating non-trivial global properties, and that sometimes it is in fact irrelevant. Finally, we perform a non-asymptotic analysis of these results using a Bayesian approach, finding that the amount of correlations needed to enhance the precision crucially depends on the number of measurement data. Our results will serve as a basis to investigate how to harness correlations in networks of quantum sensors operating both in and out of the asymptotic regime
Identifying Experimental Tool Use Through Confocal Microscopy
Characterizing use-wear traces quantitatively is a valid way to improve the capacity of use-wear analysis. This aim has been on specialists’ agenda since the beginning of the discipline. Micropolish quantification is especially important, as this type of trace allows the identification of worked materials. During the last decade, confocal microscopy has been used as a promising approach to address this question. Following previous efforts in plant microwear characterization (Ibáñez et al. Journal of Archaeological Science, 48, 96–103, 2014; Journal of Archaeological Science, 73, 62–81, 2016), here we test the capacity of the method for correctly grouping experimental tools used for working eight types of materials: bone, antler, wood, fresh hide, dry hide, wild cereals, domestic cereals, and reeds. We demonstrate, for the first time, that quantitative texture analysis of use-wear micropolish based on confocal microscopy can consistently identify tools used for working different contact materials. In this way, we are able to move toward using texture analysis as part of the standard functional analysis of prehistoric instruments.This study is part of the projects HAR2016-74999-P, HAR2015-68566-P, and HAR2016-81971-REDT funded by the Spanish Ministerio de Ciencia, Innovación y Universidades.Peer reviewe
- …