211 research outputs found

    The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity

    Get PDF
    Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication

    Intra- and interspecific polymorphisms ofLeishmania donovani andL. tropica minicircle DNA

    Get PDF
    A pair of degenerate polymerase chain reaction (PCR) primers (LEI-1, TCG GAT CC[C,T] [G,C]TG GGT AGG GGC GT; LEI-2, ACG GAT CC[G,C] [G,C][A,C]C TAT [A,T]TT ACA CC) defining a 0.15-kb segment ofLeishmania minicircle DNA was constructed. These primers amplified not only inter- but also intraspecifically polymorphic sequences. Individual sequences revealed a higher intraspecific than interspecific divergence. It is concluded that individual sequences are of limited relevance for species determination. In contrast, when a data base of 19 different sequences was analyzed in a dendrographic plot, an accurate species differentiation was feasible

    E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression

    Get PDF
    Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4- and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention

    Diagnostic performance of cardiac magnetic resonance segmental myocardial strain for detecting microvascular obstruction and late gadolinium enhancement in patients presenting after a ST-elevation myocardial infarction.

    Get PDF
    Background Microvascular obstruction (MVO) and Late Gadolinium Enhancement (LGE) assessed in cardiac magnetic resonance (CMR) are associated with adverse outcome in patients with ST-elevation myocardial infarction (STEMI). Our aim was to analyze the diagnostic performance of segmental strain for the detection of MVO and LGE. Methods Patients with anterior STEMI, who underwent additional CMR were enrolled in this sub-study of the CARE-AMI trial. Using CMR feature tracking (FT) segmental circumferential peak strain (SCS) was measured and the diagnostic performance of SCS to discriminate MVO and LGE was assessed in a derivation and validation cohort. Results Forty-eight STEMI patients (62 ± 12 years old), 39 (81%) males, who underwent CMR (i.e., mean 3.0 ± 1.5 days) after primary percutaneous coronary intervention (PCI) were included. All patients presented with LGE and in 40 (83%) patients, MVO was additionally present. Segments in all patients were visually classified and 146 (19%) segments showed MVO (i.e., LGE+/MVO+), 308 (40%) segments showed LGE and no MVO (i.e., LGE+/MVO-), and 314 (41%) segments showed no LGE (i.e., LGE-). Diagnostic performance of SCS for detecting MVO segments (i.e., LGE+/MVO+ vs. LGE+/MVO-, and LGE-) showed an AUC = 0.764 and SCS cut-off value was -11.2%, resulting in a sensitivity of 78% and a specificity of 67% with a positive predictive value (PPV) of 30% and a negative predictive value (NPV) of 94% when tested in the validation group. For LGE segments (i.e., LGE+/MVO+ and LGE+/MVO- vs. LGE-) AUC = 0.848 and SCS with a cut-off value of -13.8% yielded to a sensitivity of 76%, specificity of 74%, PPV of 81%, and NPV of 70%. Conclusion Segmental strain in STEMI patients was associated with good diagnostic performance for detection of MVO+ segments and very good diagnostic performance of LGE+ segments. Segmental strain may be useful as a potential contrast-free surrogate marker to improve early risk stratification in patients after primary PCI

    Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins

    Get PDF
    Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81–92), which bound directly to the p53 tetramerization domain, and PKCα(281–295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53

    ПРЕДОПЕРАЦИОННАЯ ПОДГОТОВКА И ПОСЛЕОПЕРАЦИОННАЯ РЕАБИЛИТАЦИЯ БОЛЬНЫХ РАКОМ ЛЕГКОГО В СОЧЕТАНИИ С ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНЬЮ ЛЕГКИХ

    Get PDF
    The purpose of the study was to analyze the world experience in the objective assessment of the functional state of the bronchopulmonary system in lung cancer patients with chronic obstructive pulmonary disease (COPD) using modern diagnostic tools and techniques as well as correction of ventilation disorders in the perioperative period using long-acting inhaled bronchodilators. Material and methods. A literature search was conducted using the Medline, Elibrary etc. databases. Out of 112 publications concerning the study of the incidence of lung cancer and COPD, external respiration function and rehabilitation of patients, 37 were included in this review. Results. COPD was shown to be the major cause of postoperative non-surgical complications and the main predictor of perioperative mortality in lung cancer patients. Modern techniques for studying the function of external respiration, such as bodyplethysmography, spirography, high-resolution computed tomography, ventilation and perfusion lung scintigraphy, were highlighted. It was shown that preoperative correction of obstructive syndrome and postoperative pulmonary rehabilitation, including drug therapy with long-acting bronchodilators in combination with smoking cessation, eradication of foci of chronic infection and respiratory gymnastics were necessary to detect functional respiratory disorders in lung cancer patients with COPD. Conclusion. To date, there are no standards clinical practice guidelines for diagnostic testing and the correction of ventilation disorders in lung cancer patients with COPD in the pre- and postoperative periods. Therefore, further studies aimed at developing a diagnostic algorithm to improve the accuracy of detecting bronchial obstructive syndrome, especially in the early stages of COPD, as well as compensation for respiratory disorders using modern bronchodilator therapy are needed.Цель исследования – обобщение мирового опыта объективной оценки функционального состояния бронхо-легочной системы у больных раком легкого в сочетании с хронической обструктивной болезнью легких (ХОБЛ) с использованием современных методов диагностики, а также коррекции вентиляционных нарушений в периоперационном периоде с помощью длительно действующих ингаляционных бронхолитиков. Материал и методы. Проведен поиск доступных литературных источников, опубликованных в базе данных Medline, Elibrary и др. Всего было найдено 112 источников, посвященных анализу заболеваемости раком легкого и ХОБЛ, изучению функции внешнего дыхания и реабилитации данной категории больных, из которых 37 были включены в данный обзор. Результаты. В литературном обзоре представлены современные данные о заболеваемости раком легкого в сочетании с ХОБЛ и особенности тактики лечения. Показано, что ХОБЛ является основной причиной послеоперационных нехирургических осложнений и главным предиктором периоперационной летальности у больных раком легкого. Освещены современные методики исследования функции внешнего дыхания, такие как бодиплетизмография, спирография, компьютерная томография высокого разрешения, вентиляционная и перфузионная сцинтиграфия легких. Показано, что при выявлении функциональных респираторных нарушений у больных раком легкого в сочетании с ХОБЛ необходимо проводить предоперационную коррекцию обструктивного синдрома и послеоперационную легочную реабилитацию, включающую медикаментозную терапию длительно действующими бронхолитиками, в совокупности с отказом от курения, санацией очагов хронической инфекции и дыхательной гимнастикой. Заключение. На данный момент в отечественной медицине не существует стандартов и клинических рекомендаций по объему диагностических мероприятий и коррекции вентиляционных нарушений у больных раком легкого в сочетании с ХОБЛ на пред- и в послеоперационном периодах лечения. В связи с этим актуальными являются исследования, направленные на разработку диагностического алгоритма, повышающего точность выявления бронхообструктивного синдрома, особенно на ранних стадиях ХОБЛ, изучение риска оперативного вмешательства, а также компенсации респираторных нарушений с использованием современной бронхолитической терапии

    Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices

    Get PDF
    Cardiovascular disease continues to be the leading cause of death, suggesting that new therapies are needed to treat the progression of heart failure post-myocardial infarction. As cardiac tissue has a limited ability to regenerate itself, experimental biomaterial therapies have focused on the replacement of necrotic cardiomyocytes and repair of the damaged extracellular matrix. While acellular and cellular cardiac patches are applied surgically to the epicardial surface of the heart, injectable materials offer the prospective advantage of minimally invasive delivery directly into the myocardium to either replace the damaged extracellular matrix or to act as a scaffold for cell delivery. Cardiac-specific decellularized matrices offer the further advantage of being biomimetic of the native biochemical and structural matrix composition, as well as the potential to be autologous therapies. This review will focus on the requirements of an ideal scaffold for catheter-based delivery as well as highlight the promise of decellularized matrices as injectable materials for cardiac repair

    Transcriptional Activation of the Adenoviral Genome Is Mediated by Capsid Protein VI

    Get PDF
    Gene expression of DNA viruses requires nuclear import of the viral genome. Human Adenoviruses (Ads), like most DNA viruses, encode factors within early transcription units promoting their own gene expression and counteracting cellular antiviral defense mechanisms. The cellular transcriptional repressor Daxx prevents viral gene expression through the assembly of repressive chromatin remodeling complexes targeting incoming viral genomes. However, it has remained unclear how initial transcriptional activation of the adenoviral genome is achieved. Here we show that Daxx mediated repression of the immediate early Ad E1A promoter is efficiently counteracted by the capsid protein VI. This requires a conserved PPxY motif in protein VI. Capsid proteins from other DNA viruses were also shown to activate the Ad E1A promoter independent of Ad gene expression and support virus replication. Our results show how Ad entry is connected to transcriptional activation of their genome in the nucleus. Our data further suggest a common principle for genome activation of DNA viruses by counteracting Daxx related repressive mechanisms through virion proteins

    Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    Get PDF
    RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/-)) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5(-/-) developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5(-/-) compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/-) mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly

    Increased Infarct Wall Thickness by a Bio-Inert Material Is Insufficient to Prevent Negative Left Ventricular Remodeling after Myocardial Infarction

    Get PDF
    Several injectable materials have been shown to preserve or improve cardiac function as well as prevent or slow left ventricular (LV) remodeling post-myocardial infarction (MI). However, it is unclear as to whether it is the structural support or the bioactivity of these polymers that lead to beneficial effects. Herein, we examine how passive structural enhancement of the LV wall by an increase in wall thickness affects cardiac function post-MI using a bio-inert, non-degradable synthetic polymer in an effort to better understand the mechanisms by which injectable materials affect LV remodeling.Poly(ethylene glycol) (PEG) gels of storage modulus G' = 0.5±0.1 kPa were injected and polymerized in situ one week after total occlusion of the left coronary artery in female Sprague Dawley rats. The animals were imaged using magnetic resonance imaging (MRI) at 7±1 day(s) post-MI as a baseline and again post-injection 49±4 days after MI. Infarct wall thickness was statistically increased in PEG gel injected vs. control animals (p<0.01). However, animals in the polymer and control groups showed decreases in cardiac function in terms of end diastolic volume, end systolic volume and ejection fraction compared to baseline (p<0.01). The cellular response to injection was also similar in both groups.The results of this study demonstrate that passive structural reinforcement alone was insufficient to prevent post-MI remodeling, suggesting that bioactivity and/or cell infiltration due to degradation of injectable materials are likely playing a key role in the preservation of cardiac function, thus providing a deeper understanding of the influencing properties of biomaterials necessary to prevent post-MI negative remodeling
    corecore