98 research outputs found

    Inhibition of angiogenesis and tumour growth by VEGF121–toxin conjugate: differential effect on proliferating endothelial cells

    Get PDF
    Vascular endothelial growth factor (VEGF) plays an important role in tumour angiogenesis. VEGF binds to tyrosine kinase receptors, which are expressed almost exclusively on tumour endothelium. Therefore, VEGF can be used to target toxin molecules to tumour vessels for anti-angiogenic therapy. However, recent evidence suggests that VEGF can also bind in an isoform-specific fashion to a newly identified neuropilin-1 (NP-1) receptor. NP-1 is widely expressed in normal tissue and presents a potential target for unwanted toxicity. As a consequence, we investigated whether the VEGF121 isoform, which lacks the NP-1 binding domain, could be used to target toxin polypeptides to tumour vasculature. Treatment of endothelial cells with a VEGF121–diphtheria toxin (DT385) conjugate selectively inhibited proliferating endothelial cells, whereas confluent cultures were completely resistant to the construct. In addition, VEGF121–DT385 conjugate treatment completely prevented tumour cell induced angiogenesis in vivo. Most importantly, the conjugate inhibited tumour growth in athymic mice and induced tumour-specific vascular damage. There was also no apparent toxicity associated with the treatment. Our results suggest that proliferating endothelial cells are highly sensitive to VEGF121–toxin conjugates and that the binding to NP-1 receptors is not necessary for efficient inhibition of tumour growth. © 2000 Cancer Research Campaig

    Endostatin expression in pancreatic tissue is modulated by elastase

    Get PDF
    Pancreatic tumours are scirrhous, avascular tumours, suggesting that they may produce angiogenesis inhibitors that suppress the growth of the vasculature to the tumour and metastases. We have sought evidence for the angiogenesis inhibitor, endostatin, in normal and cancerous pancreatic tissue. Using Western blotting, we found mature 20 kDa endostatin in cancer tissue but not in normal tissue. Several endostatin-related peptides of higher mol wt were present in both tissues. Extracts from normal tissue were able to degrade exogenous endostatin, whereas extracts from cancer were without effect. Although the exocrine pancreas secretes inactive proenzymes of trypsin, chymotrypsin and elastase, their possible role in this degradation was examined. The trypsin/chymotrypsin inhibitor, Glycine max, did not prevent the degradation of endostatin by normal pancreatic extracts but elastatinal, a specific inhibitor of elastase, reduced the rate of degradation. Extracts of pancreatic tumours did not express any detectable elastase activity, but an elastase (Km 1.1 mM) was expressed by extracts of normal pancreas. We conclude that endostatin is present and stable in pancreatic cancer tissues, which may explain their avascular nature, but that normal pancreatic tissue expresses enzymes, including elastase, which rapidly degrade endostatin. The stability of endostatin may have implications for its therapeutic use

    Tamoxifen and Flaxseed Alter Angiogenesis Regulators in Normal Human Breast Tissue In Vivo

    Get PDF
    The incidence of breast cancer is increasing in the Western world and there is an urgent need for studies of the mechanisms of sex steroids in order to develop novel preventive strategies. Diet modifications may be among the means for breast cancer prevention. Angiogenesis, key in tumor progression, is regulated by the balance between pro- and anti-angiogenic factors, which are controlled in the extracellular space. Sampling of these molecules at their bioactive compartment is therefore needed. The aims of this study were to explore if tamoxifen, one of the most used anti-estrogen treatments for breast cancer affected some of the most important endogenous angiogenesis regulators, vascular endothelial growth factor (VEGF), angiogenin, and endostatin in normal breast tissue in vivo and if a diet supplementation with flaxseed had similar effects as tamoxifen in the breast. Microdialysis was used for in situ sampling of extracellular proteins in normal breast tissue of women before and after six weeks of tamoxifen treatment or before and after addition of 25 g/day of ground flaxseed to the diet or in control women. We show significant correlations between estradiol and levels of VEGF, angiogenin, and endostatin in vivo, which was verified in ex vivo breast tissue culture. Moreover, tamoxifen decreased the levels of VEGF and angiogenin in the breast whereas endostatin increased significantly. Flaxseed did not alter VEGF or angiogenin levels but similar to tamoxifen the levels of endostatin increased significantly. We conclude that one of the mechanisms of tamoxifen in normal breast tissue include tipping of the angiogenic balance into an anti-angiogenic state and that flaxseed has limited effects on the pro-angiogenic factors whereas the anti-angiogenic endostatin may be modified by diet. Further studies of diet modifications for breast cancer prevention are warranted

    Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy

    Get PDF
    Angiogenesis and post-natal vasculogenesis are two processes involved in the formation of new vessels, and both are essential for tumour growth and metastases. We isolated endothelial cells from human blood mononuclear cells by selective culture. These blood outgrowth cells expressed endothelial cell markers and responded correctly to functional assays. To evaluate the potential of blood outgrowth endothelial cells (BOECs) to construct functional vessels in vivo, NOD-SCID mice were implanted with Lewis lung carcinoma cells subcutaneously (s.c.). Blood outgrowth endothelial cells were then injected through the tail vein. Initial distribution of these cells occurred throughout the lung, liver, spleen, and tumour vessels, but they were only found in the spleen, liver, and tumour tissue 48 h after injection. By day 24, they were mainly found in the tumour vasculature. Tumour vessel counts were also increased in mice receiving BOEC injections as compared to saline injections. We engineered BOECs to deliver an angiogenic inhibitor directly to tumour endothelium by transducing them with the gene for human endostatin. These cells maintained an endothelial phenotype and decreased tumour vascularisation and tumour volume in mice. We conclude that BOECs have the potential for tumour-specific delivery of cancer gene therapy

    Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker?

    Get PDF
    Gliomas are characterised by local infiltration, migration of tumour cells across long distances and sustained angiogenesis; therefore, proteins involved in these processes are most likely important. Such candidates are semaphorins involved in axon guidance and cell migration. In addition, semaphorins regulate tumour progression and angiogenesis. For cell signalling, class-4 semaphorins bind directly to plexins, whereas class-3 semaphorins require additional neuropilin (NRP) receptors that also bind VEGF165. The anti-angiogenic activity of class-3 semaphorins can be explained by competition with VEGF165 for NRP binding. In this study, we analysed the expressions of seven semaphorins of class-3, SEMA4D, VEGF and the NRP1 and NRP2 receptors in 38 adult glial tumours. In these tumours, SEMA3B, SEMA3G and NRP2 expressions were related to prolonged survival. In addition, SEMA3D expression was reduced in high-grade as compared with low-grade gliomas. In contrast, VEGF correlated with higher grade and poor survival. Thus, our data suggest a function for a subset of class-3 semaphorins as inhibitors of tumour progression, and the prognostic value of the VEGF/SEMA3 balance in adult gliomas. Moreover, in multivariate analysis, SEMA3G was found to be the only significant prognostic marker

    Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer.

    Get PDF
    PMC3648524Triple negative breast cancers (TNBC) are difficult to treat due to a lack of targets and heterogeneity. Inhibition of angiogenesis is a promising therapeutic strategy, but has had limited effectiveness so far in breast cancer. To quantify heterogeneity in angiogenesis-related gene expression in breast cancer, we focused on two families--VEGFs and semaphorins--that compete for neuropilin co-receptors on endothelial cells. We compiled microarray data for over 2,600 patient tumor samples and analyzed the expression of VEGF- and semaphorin-related ligands and receptors. We used principal component analysis to identify patterns of gene expression, and clustering to group samples according to these patterns. We used available survival data to determine whether these clusters had prognostic as well as therapeutic relevance. TNBC was highly associated with dysregulation of VEGF- and semaphorin-related genes; in particular, it appeared that expression of both VEGF and semaphorin genes were altered in a pro-angiogenesis direction. A pattern of high VEGFA expression with low expression of secreted semaphorins was associated with 60% of triple-negative breast tumors. While all TNBC groups demonstrated poor prognosis, this signature also correlated with lower 5-year survival rates in non-TNBC samples. A second TNBC pattern, including high VEGFC expression, was also identified. These pro-angiogenesis signatures may identify cancers that are more susceptible to VEGF inhibition.JH Libraries Open Access Fun
    • …
    corecore