89 research outputs found

    Electronic excitations and the tunneling spectra of metallic nanograins

    Full text link
    Tunneling-induced electronic excitations in a metallic nanograin are classified in terms of {\em generations}: subspaces of excitations containing a specific number of electron-hole pairs. This yields a hierarchy of populated excited states of the nanograin that strongly depends on (a) the available electronic energy levels; and (b) the ratio between the electronic relaxation rate within the nano-grain and the bottleneck rate for tunneling transitions. To study the response of the electronic energy level structure of the nanograin to the excitations, and its signature in the tunneling spectrum, we propose a microscopic mean-field theory. Two main features emerge when considering an Al nanograin coated with Al oxide: (i) The electronic energy response fluctuates strongly in the presence of disorder, from level to level and excitation to excitation. Such fluctuations produce a dramatic sample dependence of the tunneling spectra. On the other hand, for excitations that are energetically accessible at low applied bias voltages, the magnitude of the response, reflected in the renormalization of the single-electron energy levels, is smaller than the average spacing between energy levels. (ii) If the tunneling and electronic relaxation time scales are such as to admit a significant non-equilibrium population of the excited nanoparticle states, it should be possible to realize much higher spectral densities of resonances than have been observed to date in such devices. These resonances arise from tunneling into ground-state and excited electronic energy levels, as well as from charge fluctuations present during tunneling.Comment: Submitted to the Physical Review

    Tunneling Via Individual Electronic States in Ferromagnetic Nanoparticles

    Full text link
    We measure electron tunneling via discrete energy levels in ferromagnetic cobalt particles less than 4 nm in diameter, using non-magnetic electrodes. Due to magnetic anisotropy, the energy of each tunneling resonance shifts as an applied magnetic field rotates the particle's magnetic moment. We see both spin-increasing and decreasing tunneling transitions, but we do not observe the spin degeneracy at small magnetic fields seen previously in non-magnetic materials. The tunneling spectrum is denser than predicted for independent electrons, possibly due to spin-wave excitations.Comment: 4 pages, 4 figures. Improved by comments from referees, to appear in Phys. Rev. Let

    Spontaneous Magnetization and Electron Momentum Density in 3D Quantum Dots

    Full text link
    We discuss an exactly solvable model Hamiltonian for describing the interacting electron gas in a quantum dot. Results for a spherical square well confining potential are presented. The ground state is found to exhibit striking oscillations in spin polarization with dot radius at a fixed electron density. These oscillations are shown to induce characteristic signatures in the momentum density of the electron gas, providing a novel route for direct experimental observation of the dot magnetization via spectroscopies sensitive to the electron momentum density.Comment: 5 pages (Revtex4), 4 (eps) figure

    Suppression of Ground-State Magnetization in Finite-Sized Systems Due to Off-Diagonal Interaction Fluctuations

    Full text link
    We study a generic model of interacting fermions in a finite-sized disordered system. We show that the off-diagonal interaction matrix elements induce density of states fluctuations which generically favor a minimum spin ground state at large interaction amplitude, UU. This effect competes with the exchange effect which favors large magnetization at large UU, and it suppresses this exchange magnetization in a large parameter range. When off-diagonal fluctuations dominate, the model predicts a spin gap which is larger for odd-spin ground states as for even-spin, suggesting a simple experimental signature of this off-diagonal effect in Coulomb blockade transport measurements.Comment: Final, substantially modified version of the article. Accepted for publication in Physical Review Letter

    T-duality in the weakly curved background

    Get PDF
    We consider the closed string propagating in the weakly curved background which consists of constant metric and Kalb-Ramond field with infinitesimally small coordinate dependent part. We propose the procedure for constructing the T-dual theory, performing T-duality transformations along coordinates on which the Kalb-Ramond field depends. The obtained theory is defined in the non-geometric double space, described by the Lagrange multiplier yμy_\mu and its TT-dual y~μ\tilde{y}_\mu. We apply the proposed T-duality procedure to the T-dual theory and obtain the initial one. We discuss the standard relations between T-dual theories that the equations of motion and momenta modes of one theory are the Bianchi identities and the winding modes of the other

    Protocol for the development and validation procedure of the managing the link and strengthening transition from child to adult mental health care (MILESTONE) suite of measures

    Get PDF
    Background: Mental health disorders in the child and adolescent population are a pressing public health concern. Despite the high prevalence of psychopathology in this vulnerable population, the transition from Child and Adolescent Mental Health Services (CAMHS) to Adult Mental Health Services (AMHS) has many obstacles such as deficiencies in planning, organisational readiness and policy gaps. All these factors contribute to an inadequate and suboptimal transition process. A suite of measures is required that would allow young people to be assessed in a structured and standardised way to determine the on-going need for care and to improve communication across clinicians at CAMHS and AMHS. This will have the potential to reduce the overall health economic burden and could also improve the quality of life for patients travelling across the transition boundary. The MILESTONE (Managing the Link and Strengthening Transition from Child to Adult Mental Health Care) project aims to address the significant socioeconomic and societal challenge related to the transition process. This protocol paper describes the development of two MILESTONE transition-related measures: The Transition Readiness and Appropriateness Measure (TRAM), designed to be a decision-making aide for clinicians, and the Transition Related Outcome Measure (TROM), for examining the outcome of transition. Methods: The TRAM and TROM have been developed and were validated following the US FDA Guidance for Patient-reported Outcome Measures which follows an incremental stepwise framework. The study gathers information from service users, parents, families and mental health care professionals who have experience working with young people undergoing the transition process from eight European countries. Discussion: There is an urgent need for comprehensive measures that can assess transition across the CAMHS/AMHS boundary. This study protocol describes the process of development of two new transition measures: the TRAM and TROM. The TRAM has the potential to nurture better transitions as the findings can be summarised and provided to clinicians as a clinician-decision making support tool for identifying cases who need to transition and the TROM can be used to examine the outcomes of the transition process. Trial registration: MILESTONE study registration: ISRCTN83240263 Registered 23-July-2015 - ClinicalTrials.gov NCT03013595 Registered 6 January 2017

    Localization and Capacitance Fluctuations in Disordered Au Nano-junctions

    Full text link
    Nano-junctions, containing atomic-scale gold contacts between strongly disordered leads, exhibit different transport properties at room temperature and at low temperature. At room temperature, the nano-junctions exhibit conductance quantization effects. At low temperatures, the contacts exhibit Coulomb-Blockade. We show that the differences between the room-temperature and low temperature properties arise from the localization of electronic states in the leads. The charging energy and capacitance of the nano-junctions exhibit strong fluctuations with applied magnetic field at low temperature, as predicted theoretically.Comment: 20 pages 8 figure

    Decoherence in Nearly-Isolated Quantum Dots

    Get PDF
    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single-particle level spacing, but is greatly suppressed for temperature greater than the level spacing, suggesting that inelastic scattering or other dephasing mechanisms dominate in this regime.Comment: Significant revisions to include comparison to theory. Related papers available at http://marcuslab.harvard.ed

    Generalized Husimi Functions: Analyticity and Information Content

    Full text link
    The analytic properties of a class of generalized Husimi functions are discussed, with particular reference to the problem of state reconstruction. The class consists of the subset of Wodkiewicz's operational probability distributions for which the filter reference state is a squeezed vacuum state. The fact that the function is analytic means that perfectly precise knowledge of its values over any small region of phase space provides enough information to reconstruct the density matrix. If, however, one only has imprecise knowledge of its values, then the amplification of statistical errors which occurs when one attempts to carry out the continuation seriously limits the amount of information which can be extracted. To take account of this fact a distinction is made between explicate, or experimentally accessible information, and information which is only present in implicate, experimentally inaccessible form. It is shown that an explicate description of various aspects of the system can be found localised on various 2 real dimensional surfaces in complexified phase space. In particular, the continuation of the function to the purely imaginary part of complexified phase space provides an explicate description of the Wigner function.Comment: 16 pages, 2 figures, AMS-latex. Replaced with published versio
    corecore