We discuss an exactly solvable model Hamiltonian for describing the
interacting electron gas in a quantum dot. Results for a spherical square well
confining potential are presented. The ground state is found to exhibit
striking oscillations in spin polarization with dot radius at a fixed electron
density. These oscillations are shown to induce characteristic signatures in
the momentum density of the electron gas, providing a novel route for direct
experimental observation of the dot magnetization via spectroscopies sensitive
to the electron momentum density.Comment: 5 pages (Revtex4), 4 (eps) figure