27 research outputs found

    Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis

    Get PDF
    Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/flmice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL

    P11.65 Insights into the mechanisms of primary brain tumor invasion

    Full text link
    Abstract We have made progress in unravelling the mechanisms of tumor cell invasion by focusing the attention on two molecular pathways including chemokines and extracellular matrix molecules. Chemokines are important mediators of cell signaling that operate both on normal cells and tumor cells and in the immune-cell compartment (Billottet et al, 2013). Among the chemokine receptors, CXCR3 mediate diverse biological functions and comes in two major isoforms the A and B isoform. We found that ligand affinities and conformational changes are very different for the A and B form. We have recently elucidated the role and mechanism of CXCR3A in GBM invasion (Boyé et al, 2017b). We demonstrated that agonist stimulation enhances in vitro cell migration and invasion in GBM cells. A major finding was that CXCR3A forms a complex with the trafficking receptor Lipoprotein-related receptor-1 (LRP1). Silencing of LRP1 leads to an increase in the magnitude of ligand-induced conformational change with CXCR3-A focalized at the cell membrane, leading to sustained receptor activity and increase in the migration. This was also clinically validated. Our study defines LRP1 as a new regulator of CXCR3 and indicates that targeting CXCR3-A in GBM may constitute a promising strategy to halt tumor cell invasion. The extracellular matrix (ECM) has morphogenic roles in tumors. Important ECM components are the matricellular proteins, called thrombospondins(THBS1-5) (Adams and Lawler 2011). We recently elucidated the complex role of THSB1 in GBM invasion (Daubon et al.2019). Global expression analysis revealed that THBS1 is up-regulated in GBMs and associated with a poor prognosis. We, furthermore, demonstrated that THBS1 did not activate TGFβ in GBM but that TGFβ1 induced the expression of THBS1 via SMAD3. Furthermore, GBM invasion is compromised when THBS1 is silenced in tumor cells. Thus, our data clearly show that THBS1 is not only involved in the regulation of angiogenesis in GBM, but also impacts the invasive behaviour of glioma cells by interacting with a molecule called CD47 expressed on the surface of GBM cells. RNA-sequencing after microdissection of central and peripheral tumour areas in a human PDX model demonstrated that THBS1 was the gene with the highest connectivity in the peripheral invasive tumour areas. Taken together, these data indicate that THBS1 plays important role in the infiltrative process in GBM. REFERENCES: Adams JC, Lawler J. Cold Spring Harb Perspect Biol. 2011;3:a009712 Billottet C, Quemener C, Bikfalvi A. Biochim Biophys Acta. 2013;1836:287- Boyé K et al. Sci Rep. 2017;7:10703 Boyé K et al. Nat Commun. 2017;8:1571 Daubon T et al, Nature Communications. Nat Commun. 2019 Mar 8;10(1):1146 Murphy-Ullrich JE, Poczatek M. Cytokine Growth Factor Rev. 2000 11:59</jats:p

    FGD1 as a central regulator of extracellular matrix remodelling - lessons from faciogenital dysplasia.

    No full text
    Disabling mutations in the FGD1 gene cause faciogenital dysplasia (also known as Aarskog-Scott syndrome), a human X-linked developmental disorder that results in disproportionately short stature, facial, skeletal and urogenital anomalies, and in a number of cases, mild mental retardation. FGD1 encodes the guanine nucleotide exchange factor FGD1, which is specific for the Rho GTPase cell division cycle 42 (CDC42). CDC42 controls cytoskeleton-dependent membrane rearrangements, transcriptional activation, secretory membrane trafficking, G1 transition during the cell cycle and tumorigenic transformation. The cellular mechanisms by which FGD1 mutations lead to the hallmark skeletal deformations of faciogenital dysplasia remain unclear, but the pathology of the disease, as well as some recent discoveries, clearly show that the protein is involved in the regulation of bone development. Two recent studies unveiled new potential functions of FGD1, in particular, its involvement in the regulation of the formation and function of invadopodia and podosomes, which are cellular structures devoted to degradation of the extracellular matrix in tumour and endothelial cells. Here, we discuss the hypothesis that FGD1 might be an important regulator of events controlling extracellular matrix remodelling and possibly cell invasion in physiological and pathological settings. Additionally, we focus on how studying the cell biology of FGD1 might help us to connect the dots that link CDC42 signalling with remodelling of the extracellular matrix (ECM) in physiology and complex diseases, while, at the same time, furthering our understanding of the pathogenesis of faciogenital dysplasia

    OS6.3 The complex role of lactate dehydrogenases in glioblastoma development

    Full text link
    Abstract BACKGROUND Glioblastomas are among the most malignant primary brain tumors. GBMs are highly angiogenic, exhibit invasive growth, and elevated glycolysis. Under glycolytic conditions, glucose from the blood is metabolized in astrocytes into lactate by LDHA, and exported by MCT4 into the extracellular compartment, inducing a concomitant acidification of the microenvironment. LDHB, generally expressed in oligodendrocytes or neurons, metabolizes lactate into pyruvate for generating ATP in mitochondria. LDH expression was reported to be linked to phenotypic modifications in vitro in GBMs but the mechanisms and the precise role in vivo have not yet been investigated. MATERIAL AND METHODS We designed LDHA and LDHB Crispr-Cas9 constructs for infecting glioblastoma stem-like cells. Results: In vitro tumor cell invasion was not significantly impaired in sgLDHA glioblastoma cells, even under extreme hypoxic conditions. Tumor development was moderately impacted in terms of invasion or vascular density. We then explored the role of LDHB in these processes. LDHB knock-out cells had decreased invasive properties in vitro but surprisingly tumors were highly hemorrhagic and angiogenic, supporting a role of tumor-derived LDHB in blood vessel development. We furthermore evaluated the consequences of a double LDHA and LDHB knock-out in the glioma cells. Under hypoxic conditions, sgLDHA/B cell invasion was dramatically decreased in comparison to control cells, and apoptosis was also increased. Tumor development was dramatically impaired for LDHA/LDHB knockout tumors. CONCLUSION These results indicate the complex role of LDH enzymes in glioblastoma development. It constitutes the basis for further mechanistical studies linking lactate metabolism to brain tumor development and perturbation of the neuro-vascular microenvironment. </jats:sec

    The anti-vascular endothelial growth factor receptor-1 monoclonal antibody D16F7 inhibits invasiveness of human glioblastoma and glioblastoma stem cells

    Get PDF
    Background: Glioblastoma (GBM) is a highly migratory, invasive, and angiogenic brain tumor. Like vascular endothelial growth factor-A (VEGF-A), placental growth factor (PlGF) promotes GBM angiogenesis. VEGF-A is a ligand for both VEGF receptor-1 (VEGFR-1) and VEGFR-2, while PlGF interacts exclusively with VEGFR-1. We recently generated the novel anti-VEGFR-1 monoclonal antibody (mAb) D16F7 that diminishes VEGFR-1 homodimerization/ activation without affecting VEGF-A and PlGF binding. Methods: In the present study, we evaluated the expression of VEGFR-1 in human GBM tissue samples (n = 42) by immunohistochemistry, in cell lines (n = 6) and GBM stem cells (GSCs) (n = 18) by qRT-PCR and/or western blot analysis. In VEGFR-1 positive GBM or GSCs we also analyzed the ability of D16F7 to inhibit GBM invasiveness in response to VEGF-A and PlGF. Results: Most of GBM specimens stained positively for VEGFR-1 and all but one GBM cell lines expressed VEGFR-1. On the other hand, in GSCs the expression of the receptor was heterogeneous. D16F7 reduced migration and invasion of VEGFR-1 positive GBM cell lines and patient-derived GSCs in response to VEGF-A and PlGF. Interestingly, this effect was also observed in VEGFR-1 positive GSCs transfected to over-express wild-type EGFR (EGFRwt+) or mutant EGFR (ligand binding domain-deficient EGFRvIII+). Furthermore, D16F7 suppressed intracellular signal transduction in VEGFR-1 over-expressing GBM cells by reducing receptor auto-phosphorylation at tyrosine 1213 and downstream Erk1/2 activation induced by receptor ligands. Conclusion: The results from this study suggest that VEGFR-1 is a relevant target for GBM therapy and that D16F7- derived humanized mAbs warrant further investigation
    corecore