401 research outputs found

    Butterfly diagram of a Sun-like star observed using asteroseismology

    Full text link
    Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter

    Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars

    Full text link
    The differentially rotating outer layers of stars are thought to play a role in driving their magnetic activity, but the underlying mechanisms that generate and sustain differential rotation are poorly understood. We report the measurement of latitudinal differential rotation in the convection zones of 40 Sun-like stars using asteroseismology. For the most significant detections, the stars' equators rotate approximately twice as fast as their mid-latitudes. The latitudinal shear inferred from asteroseismology is much larger than predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc

    Sounding stellar cycles with Kepler - II. Ground-based observations

    Full text link
    We have monitored 20 Sun-like stars in the Kepler field-of-view for excess flux with the FIES spectrograph on the Nordic Optical Telescope since the launch of Kepler spacecraft in 2009. These 20 stars were selected based on their asteroseismic properties to sample the parameter space (effective temperature, surface gravity, activity level etc.) around the Sun. Though the ultimate goal is to improve stellar dynamo models, we focus the present paper on the combination of space-based and ground-based observations can be used to test the age-rotation-activity relations. In this paper we describe the considerations behind the selection of these 20 Sun-like stars and present an initial asteroseismic analysis, which includes stellar age estimates. We also describe the observations from the Nordic Optical Telescope and present mean values of measured excess fluxes. These measurements are combined with estimates of the rotation periods obtained from a simple analysis of the modulation in photometric observations from Kepler caused by starspots, and asteroseismic determinations of stellar ages, to test relations between between age, rotation and activity.Comment: Accepted for publication in MNRA

    Metabolic features and glucocorticoid-induced comorbidities in patients with giant cell arteritis and polymyalgia rheumatica in a Dutch and Danish cohort

    Get PDF
    OBJECTIVES: Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are age-associated inflammatory diseases that frequently overlap. Both diseases require long-term treatment with glucocorticoids (GCs), often associated with comorbidities. Previous population-based cohort studies reported that an unhealthier metabolic profile might prevent the development of GCA. Here, we report metabolic features before start of treatment and during treatment in patients with GCA and PMR. METHODS: In the Dutch GCA/PMR/SENEX (GPS) cohort, we analysed metabolic features and prevalence of comorbidities (type 2 diabetes, hypercholesterolaemia, hypertension, obesity and cataract) in treatment-naïve patients with GCA (n=50) and PMR (n=42), and compared those with the population-based Lifelines cohort (n=91). To compare our findings in the GPS cohort, we included data from patients with GCA (n=52) and PMR (n=25) from the Aarhus cohort. Laboratory measurements, comorbidities and GC use were recorded for up to 5 years in the GPS cohort. RESULTS: Glycated haemoglobin levels tended to be higher in treatment-naïve patients with GCA, whereas high-density lipoprotein, low-density lipoprotein and cholesterol levels were lower compared with the Lifelines population. Data from the Aarhus cohort were aligned with the findings obtained in the GPS cohort. Presence of comorbidities at baseline did not predict long-term GC requirement. The incidence of diabetes, obesity and cataract among patients with GCA increased upon initiation of GC treatment. CONCLUSION: Data from the GCA and PMR cohorts imply a metabolic dysregulation in treatment-naïve patients with GCA, but not in patients with PMR. Treatment with GCs led to the rise of comorbidities and an unhealthier metabolic profile, stressing the need for prednisone-sparing targeted treatment in these vulnerable patients

    The identification and functional annotation of RNA structures conserved in vertebrates

    Get PDF
    Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions containing CRSs. We find that a substantial fraction of human–mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3′ ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.</jats:p

    Kepler White Paper: Asteroseismology of Solar-Like Oscillators in a 2-Wheel Mission

    Full text link
    We comment on the potential for continuing asteroseismology of solar-type and red-giant stars in a 2-wheel Kepler Mission. Our main conclusion is that by targeting stars in the ecliptic it should be possible to perform high-quality asteroseismology, as long as favorable scenarios for 2-wheel pointing performance are met. Targeting the ecliptic would potentially facilitate unique science that was not possible in the nominal Mission, notably from the study of clusters that are significantly brighter than those in the Kepler field. Our conclusions are based on predictions of 2-wheel observations made by a space photometry simulator, with information provided by the Kepler Project used as input to describe the degraded pointing scenarios. We find that elevated levels of frequency-dependent noise, consistent with the above scenarios, would have a significant negative impact on our ability to continue asteroseismic studies of solar-like oscillators in the Kepler field. However, the situation may be much more optimistic for observations in the ecliptic, provided that pointing resets of the spacecraft during regular desaturations of the two functioning reaction wheels are accurate at the < 1 arcsec level. This would make it possible to apply a post-hoc analysis that would recover most of the lost photometric precision. Without this post-hoc correction---and the accurate re-pointing it requires---the performance would probably be as poor as in the Kepler-field case. Critical to our conclusions for both fields is the assumed level of pointing noise (in the short-term jitter and the longer-term drift). We suggest that further tests will be needed to clarify our results once more detail and data on the expected pointing performance becomes available, and we offer our assistance in this work.Comment: NASA Kepler Mission White Paper; 10 pages, 2 figure

    Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at sNN=200\sqrt{s_{NN}} = 200 GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled p+pp+p collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.Comment: 19 pages, 11 figures and 6 table
    corecore